skip to main content


Title: Links between physical and chemical weathering inferred from a 65-m-deep borehole through Earth’s critical zone
Abstract

As bedrock weathers to regolith – defined here as weathered rock, saprolite, and soil – porosity grows, guides fluid flow, and liberates nutrients from minerals. Though vital to terrestrial life, the processes that transform bedrock into soil are poorly understood, especially in deep regolith, where direct observations are difficult. A 65-m-deep borehole in the Calhoun Critical Zone Observatory, South Carolina, provides unusual access to a complete weathering profile in an Appalachian granitoid. Co-located geophysical and geochemical datasets in the borehole show a remarkably consistent picture of linked chemical and physical weathering processes, acting over a 38-m-thick regolith divided into three layers: soil; porous, highly weathered saprolite; and weathered, fractured bedrock. The data document that major minerals (plagioclase and biotite) commence to weather at 38 m depth, 20 m below the base of saprolite, in deep, weathered rock where physical, chemical and optical properties abruptly change. The transition from saprolite to weathered bedrock is more gradational, over a depth range of 11–18 m. Chemical weathering increases steadily upward in the weathered bedrock, with intervals of more intense weathering along fractures, documenting the combined influence of time, reactive fluid transport, and the opening of fractures as rock is exhumed and transformed near Earth’s surface.

 
more » « less
NSF-PAR ID:
10153271
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Weathering processes weaken and break apart rock, freeing nutrients and enhancing permeability through the subsurface. To better understand these processes, it is useful to constrain physical properties of materials derived from weathering within the critical zone. Foliated rocks exhibit permeability, strength and seismic anisotropy–the former two bear hydrological and geomorphological consequences while the latter is geophysically quantifiable. Each of these types of anisotropy are related to rock fabric (fractures and foliation); thus, characterizing weathering‐dependent changes in rock fabric with depth may have a range of implications (e.g., landslide susceptibility, groundwater modeling, and landscape evolution). To better understand how weathering effects rock fabric, we quantify seismic anisotropy in saprolite and weathered bedrock within two catchments underlain by the Precambrian Loch Raven schist, located in Oregon Ridge Park, MD. Using circular geophone arrays and perpendicular seismic refraction profiles, anisotropy versus depth functions are created for material 0–25 m below ground surface (bgs). We find that anisotropy is relatively low (0%–15%) in the deepest material sampled (12–25 m bgs) but becomes more pronounced (29%–33%) at depths corresponding with saprolite and highly weathered bedrock (5–12 m bgs). At shallow soil depths (0–5 m bgs), material is seismically isotropic, indicating that mixing processes have destroyed parent fabric. Therefore, in situ weathering and anisotropy appear to be correlated, suggesting that in‐place weathering amplifies the intrinsic anisotropy of bedrock.

     
    more » « less
  2. Abstract

    Lithium isotopes are used to trace weathering intensity, but little is known about the processes that fractionate them in highly weathered settings, where secondary minerals play a dominant role in weathering reactions. To help fill this gap in our knowledge of Li isotope systematics, we investigated Li isotope fractionation at an andesitic catchment in Puerto Rico, where the highest rates of silicate weathering on Earth have been documented. We found the lowest δ7Li values published to date for porewater (−27‰) and bulk regolith (−38‰), representing apparent fractionations relative to parent rock of −31‰ and −42‰, respectively. We also found δ7Li values that are lower in the exchangeable fraction than in the bulk regolith or porewater, the opposite than expected from secondary mineral precipitation. We interpret these large isotopic offsets and the unusual relationships between Li pools as resulting from two distinct weathering processes at different depths in the regolith. At the bedrock‐regolith transition (9.3–8.5 m depth), secondary mineral precipitation preferentially retains the lighter6Li isotope. These minerals then dissolve further up the profile, leaching6Li from the bulk solid, with a total variation of about +50‰withinthe profile, attributable primarily to clay dissolution. Importantly, streamwater δ7Li (about +35‰) is divorced entirely from these regolith weathering processes, instead reflecting deeper weathering reactions (>9.3 m). Our work thus shows that the δ7Li of waters draining highly weathered catchments may reflect bedrock mineralogy and hydrology, rather than weathering intensity in the regolith covering the catchment.

     
    more » « less
  3. Abstract

    Understanding how soil thickness and bedrock weathering vary across ridge and valley topography is needed to constrain the flowpaths of water and sediment production within a landscape. Here, we investigate saprolite and weathered bedrock properties across a ridge‐valley system in the Northern California Coast Ranges, USA, where topography varies with slope aspect such that north‐facing slopes have thicker soils and are more densely vegetated than south‐facing slopes. We use active source seismic refraction surveys to extend observations made in boreholes to the hillslope scale. Seismic velocity models across several ridges capture a high velocity gradient zone (from 1,000 to 2,500 m/s) located ∼4–13 m below ridgetops that coincides with transitions in material strength and chemical depletion observed in boreholes. Comparing this transition depth across multiple north‐ and south‐facing slopes, we find that the thickness of saprolite does not vary with slope aspects. Additionally, seismic survey lines perpendicular and parallel to bedding planes reveal weathering profiles that thicken upslope and taper downslope to channels. Using a rock physics model incorporating seismic velocity, we estimate the total porosity of the saprolite and find that inherited fractures contribute a substantial amount of pore space in the upper 6 m, and the lateral porosity structure varies strongly with hillslope position. The aspect‐independent weathering structure suggests that the contemporary critical zone structure at Rancho Venada is a legacy of past climate and vegetation conditions.

     
    more » « less
  4. The rate of chemical weathering has been observed to increase with the rate of physical erosion in published comparisons of many catchments, but the mechanisms that couple these processes are not well understood. We investigated this question by exam- ining the chemical weathering and porosity profiles from catchments developed on marine shale located in Pennsylvania, USA (Susquehanna Shale Hills Critical Zone Observatory, SSHCZO); California, USA (Eel River Critical Zone Observatory, ERC- ZO); and Taiwan (Fushan Experimental Forest). The protolith compositions, protolith porosities, and the depths of regolith at these sites are roughly similar while the catchments are characterized by large differences in erosion rate (1–3 mm yr􏱝1 in Fushan 􏱞 0.2–0.4 mm yr􏱝1 in ERCZO 􏱞 0.01–0.025 mm yr􏱝1 in SSHCZO). The natural experiment did not totally isolate erosion as a variable: mean annual precipitation varied along the erosion gradient (4.2 m yr􏱝1 in Fushan > 1.9 m yr􏱝1 in ERCZO > 1.1 m yr􏱝1 in SSHCZO), so the fastest eroding site experiences nearly twice the mean annual temperature of the other two. Even though erosion rates varied by about 100􏱟, the depth of pyrite and carbonate depletion (defined here as regolith thickness) is roughly the same, consistent with chemical weathering of those minerals keeping up with erosion at the three sites. These minerals were always observed to be the deepest to react, and they reacted until 100% depletion. In two of three of the catchments where borehole observations were available for ridges, these minerals weathered across narrow reaction fronts. On the other hand, for the rock-forming clay mineral chlorite, the depth interval of weathering was wide and the extent of depletion observed at the land surface decreased with increasing erosion/precipitation. Thus, chemical weathering of the clay did not keep pace with erosion rate. But perhaps the biggest difference among the shales is that in the fast-eroding sites, microfractures account for 30–60% of the total porosity while in the slow-eroding shale, dissolution could be directly related to secondary porosity. We argue that the microfractures increase the influx of oxygen at depth and decrease the size of diffusion-limited internal domains of matrix, accelerating weathering of pyrite and carbonate under high erosion-rate condi- tions. Thus, microfracturing is a process that can couple physical erosion and chemical weathering in shales. 
    more » « less
  5. Meteoric waters move along pathways in the subsurface that differ as a function of lithology because of the effects of chemical and physical weathering. To explore how this affects stream chemistry, we investigated watersheds around an igneous intrusion in the Luquillo Mountains (Puerto Rico). We analyzed streams on 1) unmetamorphosed country rock (volcaniclastic sedimentary strata, VC) surrounding an igneous intrusion, 2) the quartz-diorite intrusion (QD), and 3) the metamorphosed aureole rock (hornfels-facies volcaniclastics, HF). These lithologies differ physically and chemically but weather under the same tropical rain forest conditions. The sedimentary VC lithology is pervasively fractured while the massive QD and HF lithologies are relatively unfractured. However, the QD fractures during weathering to produce spheroidally-weathered corestones surrounded by cm-thick rindlets of increasingly weathered rock. Meteoric waters flow pervasively through the network of already-fractured VC rock and the spheroidally weathered rindlets on the QD, but only access a limited fraction of the HF, explaining why streams draining HF are the most dilute in the mountains. This results in various thicknesses of regolith from thick (VC) to moderate (QD) to thin or nonexistent (HF). The pervasive fractures allow groundwater to flow deeply through the VC and then return to the mainstem river (Río Mameyes) at lower elevations. These “rock waters” drive concentrations of rock-derived solutes (silica, base cations, sulfate, phosphate) higher in the lower reaches of the stream. Water also flows through weathering-induced fractures on the QD at high elevations where rindletted corestones are present in stacks, and this water flux dissolves plagioclase and hornblende and oxidizes biotite. This “QD rock water” is not generated at lower elevations in the Río Icacos watershed, where stacks of corestones are absent, and contributions to stream solutes derive from weathering of feldspar- and hornblende-depleted saprolite. The stream chemistry in the QD-dominated watershed (Río Icacos) thus varies from concentrated QD-rock water at channel heads below steep ridgelines toward more diluted “saprolite water” downstream. These observations emphasize the importance of lithology and fracture patterns in dictating water flowpaths, stream chemistry, and regolith development in headwater catchments. 
    more » « less