Abstract The creation of fractures in bedrock dictates water movement through the critical zone, controlling weathering, vadose zone water storage, and groundwater recharge. However, quantifying connections between fracturing, water flow, and chemical weathering remains challenging because of limited access to the deep critical zone. Here we overcome this challenge by coupling measurements from borehole drilling, groundwater monitoring, and seismic refraction surveys in the central California Coast Range. Our results show that the subsurface is highly fractured, which may be driven by the regional geologic and tectonic setting. The pervasively fractured rock facilitates infiltration of meteoric water down to a water table that aligns with oxidation in exhumed rock cores and is coincident with the adjacent intermittent first‐order stream channel. This work highlights the need to incorporate deep water flow and weathering due to pervasive fracturing into models of catchment water balances and critical zone weathering, especially in tectonically active landscapes.
more »
« less
Lithological Control of Stream Chemistry in the Luquillo Mountains, Puerto Rico
Meteoric waters move along pathways in the subsurface that differ as a function of lithology because of the effects of chemical and physical weathering. To explore how this affects stream chemistry, we investigated watersheds around an igneous intrusion in the Luquillo Mountains (Puerto Rico). We analyzed streams on 1) unmetamorphosed country rock (volcaniclastic sedimentary strata, VC) surrounding an igneous intrusion, 2) the quartz-diorite intrusion (QD), and 3) the metamorphosed aureole rock (hornfels-facies volcaniclastics, HF). These lithologies differ physically and chemically but weather under the same tropical rain forest conditions. The sedimentary VC lithology is pervasively fractured while the massive QD and HF lithologies are relatively unfractured. However, the QD fractures during weathering to produce spheroidally-weathered corestones surrounded by cm-thick rindlets of increasingly weathered rock. Meteoric waters flow pervasively through the network of already-fractured VC rock and the spheroidally weathered rindlets on the QD, but only access a limited fraction of the HF, explaining why streams draining HF are the most dilute in the mountains. This results in various thicknesses of regolith from thick (VC) to moderate (QD) to thin or nonexistent (HF). The pervasive fractures allow groundwater to flow deeply through the VC and then return to the mainstem river (Río Mameyes) at lower elevations. These “rock waters” drive concentrations of rock-derived solutes (silica, base cations, sulfate, phosphate) higher in the lower reaches of the stream. Water also flows through weathering-induced fractures on the QD at high elevations where rindletted corestones are present in stacks, and this water flux dissolves plagioclase and hornblende and oxidizes biotite. This “QD rock water” is not generated at lower elevations in the Río Icacos watershed, where stacks of corestones are absent, and contributions to stream solutes derive from weathering of feldspar- and hornblende-depleted saprolite. The stream chemistry in the QD-dominated watershed (Río Icacos) thus varies from concentrated QD-rock water at channel heads below steep ridgelines toward more diluted “saprolite water” downstream. These observations emphasize the importance of lithology and fracture patterns in dictating water flowpaths, stream chemistry, and regolith development in headwater catchments.
more »
« less
- PAR ID:
- 10386517
- Date Published:
- Journal Name:
- Frontiers in Earth Science
- Volume:
- 10
- ISSN:
- 2296-6463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Weathering processes weaken and break apart rock, freeing nutrients and enhancing permeability through the subsurface. To better understand these processes, it is useful to constrain physical properties of materials derived from weathering within the critical zone. Foliated rocks exhibit permeability, strength and seismic anisotropy–the former two bear hydrological and geomorphological consequences while the latter is geophysically quantifiable. Each of these types of anisotropy are related to rock fabric (fractures and foliation); thus, characterizing weathering‐dependent changes in rock fabric with depth may have a range of implications (e.g., landslide susceptibility, groundwater modeling, and landscape evolution). To better understand how weathering effects rock fabric, we quantify seismic anisotropy in saprolite and weathered bedrock within two catchments underlain by the Precambrian Loch Raven schist, located in Oregon Ridge Park, MD. Using circular geophone arrays and perpendicular seismic refraction profiles, anisotropy versus depth functions are created for material 0–25 m below ground surface (bgs). We find that anisotropy is relatively low (0%–15%) in the deepest material sampled (12–25 m bgs) but becomes more pronounced (29%–33%) at depths corresponding with saprolite and highly weathered bedrock (5–12 m bgs). At shallow soil depths (0–5 m bgs), material is seismically isotropic, indicating that mixing processes have destroyed parent fabric. Therefore, in situ weathering and anisotropy appear to be correlated, suggesting that in‐place weathering amplifies the intrinsic anisotropy of bedrock.more » « less
-
Abstract How does hillslope structure (e.g., hillslope shape and permeability variation) regulate its hydro‐geochemical functioning (flow paths, solute export, chemical weathering)? Numerical reactive transport experiments and particle tracking were used to answer this question. Results underscore the first‐order control of permeability variations (with depth) on vertical connectivity (VC), defined as the fraction of water flowing into streams from below the soil zone. Where permeability decreases sharply and VC is low, >95% of water flows through the top 6 m of the subsurface, barely interacting with reactive rock at depth. High VC also elongates mean transit times (MTTs) and weathering rates. VC however is less of an influence under arid climates where long transit times drive weathering to equilibrium. The results lead to three working hypotheses that can be further tested.H1:The permeability variations with depth influence MTTs of stream water more strongly than hillslope shapes; hillslope shapes instead influence the younger fraction of stream water more.H2:High VC arising from high permeability at depths enhances weathering by promoting deeper water penetration and water‐rock interactions; the influence of VC weakens under arid climates and larger hillslopes with longer MTTs.H3:VC regulates chemical contrasts between shallow and deep waters (Cratio) and solute export patterns encapsulated in the power law slope b of concentration‐discharge (CQ) relationships.Higher VC leads to similar shallow versus deep water chemistry (Cratio∼1) and more chemostatic CQ patterns. Although supporting data already exist, these hypotheses can be further tested with carefully designed, co‐located modeling and measurements of soil, rock, and waters. Broadly, the importance of hillslope subsurface structure (e.g., permeability variation) indicate it is essential in regulating earth surface hydrogeochemical response to changing climate and human activities.more » « less
-
Abstract Within Earth's critical zone, weathering processes influence landscape evolution and hillslope hydrology by creating porosity in bedrock, transforming it into saprolite and eventually soil. In situ weathering processes drive much of this transformation while preserving the rock fabric of the parent material. Inherited rock fabric in regolith makes the critical zone anisotropic, affecting its mechanical and hydrological properties. Therefore, quantifying and studying anisotropy is an important part of characterising the critical zone, yet doing so remains challenging. Seismic methods can be used to detect rock fabric and infer mechanical and hydrologic conductivity anisotropy across landscapes. We present a novel way of measuring seismic anisotropy in the critical zone using Rayleigh and Love surface waves. This method leverages multi‐component surface seismic data to create a high‐resolution model of seismic anisotropy, which we compare with a nuclear magnetic resonance log measured in a nearby borehole. The two geophysical data sets show that seismic anisotropy and porosity develop at similar depths in weathered bedrock and both reach their maximum values in saprolite, implying that in situ weathering enhances anisotropy while concurrently generating porosity in the critical zone. We bolster our findings with in situ measurements of seismic and hydrologic conductivity anisotropy made in a 3 m deep soil excavation. Our study offers a fresh perspective on the importance of rock fabric in the development and function of the critical zone and sheds new insights into how weathering processes operate.more » « less
-
Abstract Understanding how soil thickness and bedrock weathering vary across ridge and valley topography is needed to constrain the flowpaths of water and sediment production within a landscape. Here, we investigate saprolite and weathered bedrock properties across a ridge‐valley system in the Northern California Coast Ranges, USA, where topography varies with slope aspect such that north‐facing slopes have thicker soils and are more densely vegetated than south‐facing slopes. We use active source seismic refraction surveys to extend observations made in boreholes to the hillslope scale. Seismic velocity models across several ridges capture a high velocity gradient zone (from 1,000 to 2,500 m/s) located ∼4–13 m below ridgetops that coincides with transitions in material strength and chemical depletion observed in boreholes. Comparing this transition depth across multiple north‐ and south‐facing slopes, we find that the thickness of saprolite does not vary with slope aspects. Additionally, seismic survey lines perpendicular and parallel to bedding planes reveal weathering profiles that thicken upslope and taper downslope to channels. Using a rock physics model incorporating seismic velocity, we estimate the total porosity of the saprolite and find that inherited fractures contribute a substantial amount of pore space in the upper 6 m, and the lateral porosity structure varies strongly with hillslope position. The aspect‐independent weathering structure suggests that the contemporary critical zone structure at Rancho Venada is a legacy of past climate and vegetation conditions.more » « less
An official website of the United States government

