skip to main content


Title: Lithological Control of Stream Chemistry in the Luquillo Mountains, Puerto Rico
Meteoric waters move along pathways in the subsurface that differ as a function of lithology because of the effects of chemical and physical weathering. To explore how this affects stream chemistry, we investigated watersheds around an igneous intrusion in the Luquillo Mountains (Puerto Rico). We analyzed streams on 1) unmetamorphosed country rock (volcaniclastic sedimentary strata, VC) surrounding an igneous intrusion, 2) the quartz-diorite intrusion (QD), and 3) the metamorphosed aureole rock (hornfels-facies volcaniclastics, HF). These lithologies differ physically and chemically but weather under the same tropical rain forest conditions. The sedimentary VC lithology is pervasively fractured while the massive QD and HF lithologies are relatively unfractured. However, the QD fractures during weathering to produce spheroidally-weathered corestones surrounded by cm-thick rindlets of increasingly weathered rock. Meteoric waters flow pervasively through the network of already-fractured VC rock and the spheroidally weathered rindlets on the QD, but only access a limited fraction of the HF, explaining why streams draining HF are the most dilute in the mountains. This results in various thicknesses of regolith from thick (VC) to moderate (QD) to thin or nonexistent (HF). The pervasive fractures allow groundwater to flow deeply through the VC and then return to the mainstem river (Río Mameyes) at lower elevations. These “rock waters” drive concentrations of rock-derived solutes (silica, base cations, sulfate, phosphate) higher in the lower reaches of the stream. Water also flows through weathering-induced fractures on the QD at high elevations where rindletted corestones are present in stacks, and this water flux dissolves plagioclase and hornblende and oxidizes biotite. This “QD rock water” is not generated at lower elevations in the Río Icacos watershed, where stacks of corestones are absent, and contributions to stream solutes derive from weathering of feldspar- and hornblende-depleted saprolite. The stream chemistry in the QD-dominated watershed (Río Icacos) thus varies from concentrated QD-rock water at channel heads below steep ridgelines toward more diluted “saprolite water” downstream. These observations emphasize the importance of lithology and fracture patterns in dictating water flowpaths, stream chemistry, and regolith development in headwater catchments.  more » « less
Award ID(s):
1831952 2217532 2012878
NSF-PAR ID:
10386517
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Earth Science
Volume:
10
ISSN:
2296-6463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As bedrock weathers to regolith – defined here as weathered rock, saprolite, and soil – porosity grows, guides fluid flow, and liberates nutrients from minerals. Though vital to terrestrial life, the processes that transform bedrock into soil are poorly understood, especially in deep regolith, where direct observations are difficult. A 65-m-deep borehole in the Calhoun Critical Zone Observatory, South Carolina, provides unusual access to a complete weathering profile in an Appalachian granitoid. Co-located geophysical and geochemical datasets in the borehole show a remarkably consistent picture of linked chemical and physical weathering processes, acting over a 38-m-thick regolith divided into three layers: soil; porous, highly weathered saprolite; and weathered, fractured bedrock. The data document that major minerals (plagioclase and biotite) commence to weather at 38 m depth, 20 m below the base of saprolite, in deep, weathered rock where physical, chemical and optical properties abruptly change. The transition from saprolite to weathered bedrock is more gradational, over a depth range of 11–18 m. Chemical weathering increases steadily upward in the weathered bedrock, with intervals of more intense weathering along fractures, documenting the combined influence of time, reactive fluid transport, and the opening of fractures as rock is exhumed and transformed near Earth’s surface.

     
    more » « less
  2. Abstract

    The Rio Icacos watershed in the Luquillo Mountains (Puerto Rico) is unique due to its extremely rapid weathering rates. The watershed is incised into a quartz diorite that has developed a large knickzone defining the river profile. Regolith thickness within the watershed generally decreases from 20 to 30 m at the ridges to several meters in the quartz diorite‐dominated valley to tens of centimeters near the major river knickpoint, as determined from previous studies. Above the knickzone, we observe spheroidal corestones, but below this weathering is much less apparent. Measured erosion rates from previous studies are also high in the knickzone compared with upper elevations within the river profile. A suite of near‐surface geophysical methods (i.e. ground penetrating radar and terrain conductivity) capable of fast data acquisition in rugged landscapes, was deployed at kilometer scales to characterize critical zone structure. Concentrations of chaotic ground penetrating radar (GPR) reflections and diffraction hyperbolas with low electrical conductivity were observed in vertical zones that outcrop at the land surface as areas of intense fracturing and spheroidally weathered corestones. The width of these fractured and weathered zones showed an increase with proximity to the knickpoint, and was attributed to dilation of these sub‐vertical fractures near the knickpoint, as postulated theoretically by a stress model calculated for the topographic variability across the knickzone in the Rio Icacos, and that shows a release of compressive stress near the knickpoint. We hypothesize that erosion rates increase in the knickzone because of this inferred dilation of fractures. Specifically, opened fractures could enhance access of water and in turn promote spalling, erosion, and spheroidal weathering. This study shows that ground‐based hydrogeophysical methods used at the landscape‐scale (traditionally applied at smaller scales) can be used to explore critical zone architecture at the scales needed to explain the extreme variability in erosion rates across river profiles. © 2018 John Wiley & Sons, Ltd.

     
    more » « less
  3. In weathered bedrock aquifers, groundwater is stored in pores and fractures that open as rocks are exhumed and minerals interact with meteoric fluids. Little is known about this storage because geochemical and geophysical observations are limited to pits, boreholes, or outcrops or to inferences based on indirect measurements between these sites. We trained a rock physics model to borehole observations in a well-constrained ridge and valley landscape and then interpreted spatial variations in seismic refraction velocities. We discovered that P-wave velocities track where a porosity-generating reaction initiates in shale in three boreholes across the landscape. Specifically, velocities of 2.7 ± 0.2 km/s correspond with growth of porosity from dissolution of chlorite, the most reactive of the abundant minerals in the shale. In addition, sonic velocities are consistent with the presence of gas bubbles beneath the water table under valley and ridge. We attribute this gas largely to CO2produced by 1) microbial respiration in soils as meteoric waters recharge into the subsurface and 2) the coupled carbonate dissolution and pyrite oxidation at depth in the rock. Bubbles may nucleate below the water table because waters depressurize as they flow from ridge to valley and because pores have dilated as the deep rock has been exhumed by erosion. Many of these observations are likely to also describe the weathering and flow path patterns in other headwater landscapes. Such combined geophysical and geochemical observations will help constrain models predicting flow, storage, and reaction of groundwater in bedrock systems.

     
    more » « less
  4. Abstract

    How does hillslope structure (e.g., hillslope shape and permeability variation) regulate its hydro‐geochemical functioning (flow paths, solute export, chemical weathering)? Numerical reactive transport experiments and particle tracking were used to answer this question. Results underscore the first‐order control of permeability variations (with depth) on vertical connectivity (VC), defined as the fraction of water flowing into streams from below the soil zone. Where permeability decreases sharply and VC is low, >95% of water flows through the top 6 m of the subsurface, barely interacting with reactive rock at depth. High VC also elongates mean transit times (MTTs) and weathering rates. VC however is less of an influence under arid climates where long transit times drive weathering to equilibrium. The results lead to three working hypotheses that can be further tested.H1:The permeability variations with depth influence MTTs of stream water more strongly than hillslope shapes; hillslope shapes instead influence the younger fraction of stream water more.H2:High VC arising from high permeability at depths enhances weathering by promoting deeper water penetration and water‐rock interactions; the influence of VC weakens under arid climates and larger hillslopes with longer MTTs.H3:VC regulates chemical contrasts between shallow and deep waters (Cratio) and solute export patterns encapsulated in the power law slope b of concentration‐discharge (CQ) relationships.Higher VC leads to similar shallow versus deep water chemistry (Cratio∼1) and more chemostatic CQ patterns. Although supporting data already exist, these hypotheses can be further tested with carefully designed, co‐located modeling and measurements of soil, rock, and waters. Broadly, the importance of hillslope subsurface structure (e.g., permeability variation) indicate it is essential in regulating earth surface hydrogeochemical response to changing climate and human activities.

     
    more » « less
  5. Abstract

    Snowmelt‐fed springs and small (0.5 km2) upland catchments in alpine areas of the western United States contribute significantly to the quantity and inorganic chemistry of water delivered to downstream basins but have not been studied extensively. Mineral weathering, transit time, and hydrologic mixing control the solute chemistry of waters that drain the upland zone of Niwot Ridge, Colorado Front Range, and adjacent areas in the granitic core of the Southern Rocky Mountains. Water in 37 springs sampled in this study flows in generally short steep paths (~0.3 km) through shallow regolith with mean transit times (MTT) of weeks to months, producing solutions dominated by Si, Ca2+, Na+, and HCO3, locally SO42−. Rock type is a significant control on spring, surface, and shallow groundwater chemistry, and plagioclase (oligoclase) is the major source of dissolved Na+and Si. Concentrations of Ca2+exceed stoichiometric predictions of oligoclase weathering by ~3.5×; excess Ca2+likely represents weathering of aeolian material, vein calcite, or trace minerals. Concentrations of base cations and Si increase slowly with estimated MTT of 0.2 years for Niwot Ridge spring waters, and several years for shallow groundwater sampled by wells. Chemical weathering of silicate minerals is slow with estimated rates of ~2.0 and 0.2 pmol·m−2·s−1for oligoclase and microcline, respectively; the most mineralized spring waters are saturated only with respect to kaolinite and montmorillonite. More than 50% of the dissolved base cations + Si measured in Boulder Creek at Orodell (~25 km downstream) accumulate before water emerges from alpine springs on Niwot Ridge. Warming global temperatures are shifting more high‐elevation precipitation to rain, potentially changing run‐off patterns, transit time, and solute loads. Acquisition of solutes by alpine waters thus has implications far beyond small upland catchments.

     
    more » « less