skip to main content


Title: Modeling the Effects of Morphine-Altered Virus Specific Antibody Responses on HIV/SIV Dynamics
Abstract

Drugs of abuse, such as opiates, have been widely associated with enhancing HIV replication, accelerating disease progression and diminishing host-immune responses, thereby making it harder to effectively manage HIV infection. It is thus important to study the effects of drugs of abuse on HIV-infection and immune responses. Here, we develop mathematical models that incorporate the effects of morphine-altered antibody responses on HIV/SIV dynamics. Based on fitting the model to experimental data from simian immunodeficiency virus (SIV) infections in control and morphine-addicted macaques, we found that two of the most significant effects of virus specific antibodies are neutralizing viral particles and enhancing viral clearance. Using our model, we quantified how morphine alters virus-specific antibody responses, and how this alteration affects the key components of virus dynamics such as infection rate, virus clearance, viral load, CD4+T cell count, and CD4+T cell loss in SIV-infected macaques under conditioning with morphine. We found that in a subpopulation of SIV-infected morphine addicted macaques, the presence of drugs of abuse may cause significantly diminished antibody responses, resulting in more severe infection with increased SIV infectivity, a decreased viral clearance rate, increased viral load, and higher CD4+T cell loss.

 
more » « less
NSF-PAR ID:
10153368
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we present a multi-scale co-affection model of HIV infection and opioid addiction. The population scale epidemiological model is linked to the within-host model which describes the HIV and opioid dynamics in a co-affected individual. CD4 cells and viral load data obtained from morphine addicted SIV-infected monkeys are used to validate the within-host model. AIDS diagnoses, HIV death and opioid mortality data are used to fit the between-host model. When the rates of viral clearance and morphine uptake are fixed, the within-host model is structurally identifiable. If in addition the morphine saturation and clearance rates are also fixed the model becomes practical identifiable. Analytical results of the multi-scale model suggest that in addition to the disease-addiction-free equilibrium, there is a unique HIV-only and opioid-only equilibrium. Each of the boundary equilibria is stable if the invasion number of the other epidemic is below one. Elasticity analysis suggests that the most sensitive number is the invasion number of opioid epidemic with respect to the parameter of enhancement of HIV infection of opioid-affected individual. We conclude that the most effective control strategy is to prevent opioid addicted individuals from getting HIV, and to treat the opioid addiction directly and independently from HIV.

     
    more » « less
  2. Abstract

    In the secondary lymphoid tissues, human immunodeficiency virus (HIV) can replicate both in the follicular and the extrafollicular compartments. Yet, virus is concentrated in the follicular compartment in the absence of antiretroviral therapy, in part due to the lack of cytotoxic T lymphocyte (CTL)-mediated activity there. CTL home to the extrafollicular compartment, where they can suppress virus load to relatively low levels. We use mathematical models to show that this compartmentalization can explain seemingly counterintuitive observations. First, it can explain the observed constancy of the viral decline slope during antiviral therapy in the peripheral blood, irrespective of the presence of CTL in SIV-infected macaques, under the assumption that CTL-mediated lysis significantly contributes to virus suppression. Second, it can account for the relatively long times it takes for CTL escape mutants to emerge during chronic infection even if CTL-mediated lysis is responsible for virus suppression. The reason is the heterogeneity in CTL activity, and the consequent heterogeneity in selection pressure between the follicular and extrafollicular compartments. Hence, to understand HIV dynamics more thoroughly, this analysis highlights the importance of measuring virus populations separately in the extrafollicular and follicular compartments rather than using virus load in peripheral blood as an observable; this hides the heterogeneity between compartments that might be responsible for the particular patterns seen in the dynamics and evolution of the HIV in vivo.

     
    more » « less
  3. An effective vaccine that can protect against HIV infection does not exist. A major reason why a vaccine is not available is the high mutability of the virus, which enables it to evolve mutations that can evade human immune responses. This challenge is exacerbated by the ability of the virus to evolve compensatory mutations that can partially restore the fitness cost of immune-evading mutations. Based on the fitness landscapes of HIV proteins that account for the effects of coupled mutations, we designed a single long peptide immunogen comprising parts of the HIV proteome wherein mutations are likely to be deleterious regardless of the sequence of the rest of the viral protein. This immunogen was then stably expressed in adenovirus vectors that are currently in clinical development. Macaques immunized with these vaccine constructs exhibited T-cell responses that were comparable in magnitude to animals immunized with adenovirus vectors with whole HIV protein inserts. Moreover, the T-cell responses in immunized macaques strongly targeted regions contained in our immunogen. These results suggest that further studies aimed toward using our vaccine construct for HIV prophylaxis and cure are warranted.

     
    more » « less
  4. Regoes, Roland R. (Ed.)
    While highly active antiretroviral therapy (HAART) is successful in controlling the replication of Human Immunodeficiency Virus (HIV-1) in many patients, currently there is no cure for HIV-1, presumably due to the presence of reservoirs of the virus. One of the least studied viral reservoirs is the brain, which the virus enters by crossing the blood-brain barrier (BBB) via macrophages, which are considered as conduits between the blood and the brain. The presence of HIV-1 in the brain often leads to HIV associated neurocognitive disorders (HAND), such as encephalitis and early-onset dementia. In this study we develop a novel mathematical model that describes HIV-1 infection in the brain and in the plasma coupled via the BBB. The model predictions are consistent with data from macaques infected with a mixture of simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV). Using our model, we estimate the rate of virus transport across the BBB as well as viral replication inside the brain, and we compute the basic reproduction number. We also carry out thorough sensitivity analysis to define the robustness of the model predictions on virus dynamics inside the brain. Our model provides useful insight into virus replication within the brain and suggests that the brain can be an important reservoir causing long-term viral persistence. 
    more » « less
  5. Abstract

    In this invited article, we explain technical aspects of the lymphocytic choriomeningitis virus (LCMV) system, providing an update of a prior contribution by Matthias von Herrath and J. Lindsay Whitton. We provide an explanation of the LCMV infection models, highlighting the importance of selecting an appropriate route and viral strain. We also describe how to quantify virus‐specific immune responses, followed by an explanation of useful transgenic systems. Specifically, our article will focus on the following protocols. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: LCMV infection routes in mice

    Support Protocol 1: Preparation of LCMV stocks

    ASSAYS TO MEASURE LCMV TITERS

    Support Protocol 2: Plaque assay

    Support Protocol 3: Immunofluorescence focus assay (IFA) to measure LCMV titer

    MEASUREMENT OF T CELL AND B CELL RESPONSES TO LCMV INFECTION

    Basic Protocol 2: Triple tetramer staining for detection of LCMV‐specific CD8 T cells

    Basic Protocol 3: Intracellular cytokine staining (ICS) for detection of LCMV‐specific T cells

    Basic Protocol 4: Enumeration of direct ex vivo LCMV‐specific antibody‐secreting cells (ASC)

    Basic Protocol 5: Limiting dilution assay (LDA) for detection of LCMV‐specific memory B cells

    Basic Protocol 6: ELISA for quantification of LCMV‐specific IgG antibody

    Support Protocol 4: Preparation of splenic lymphocytes

    Support Protocol 5: Making BHK21‐LCMV lysate

    Basic Protocol 7: Challenge models

    TRANSGENIC MODELS

    Basic Protocol 8: Transfer of P14 cells to interrogate the role of IFN‐I on CD8 T cell responses

    Basic Protocol 9: Comparing the expansion of naïve versus memory CD4 T cells following chronic viral challenge

     
    more » « less