Abstract Development of terahertz (THz) sources, detectors, and optical components has been an active area of research across the globe. The interest in THz optoelectronics is driven by the various applications they have enabled, such as ultrawide‐band communication systems, air‐ and space‐borne astronomy, atmospheric monitoring, small‐scale radar, airport security scanners, ultrafast nanodevices, and biomedical imaging and sensing. Here, the aim is to provide a comprehensive review of THz bandpass metamaterials focusing on several areas. First, the design fundamentals and geometrical patterns of THz bandpass metamaterials are summarized. Second, fabrication methods of THz bandpass metamaterials are reviewed, including typical micro‐ and nanofabrication techniques and laser micromachining techniques. More importantly, different engineering methods are reviewed for tuning and modulation of the THz transmission resonance for these metamaterials. Both passive and active modulation methods are included in this discussion; the passive method involves changes in the geometrical pattern of the filter material, and the active method performs in situ modulation of properties by applying an external physical field. Finally, the potential applications and prospects for future research of THz bandpass metamaterials are discussed.
more »
« less
High Throughput Laser Process of Transparent Conducting Surfaces for Terahertz Bandpass Ultrathin Metamaterials
Abstract Terahertz (THz) imaging has attracted much attention within the past decade as an emerging nondestructive evaluation technique. In this paper, we present a novel Laser-based Metamaterial Fabrication (LMF) process for high-throughput fabrication of transparent conducting surfaces on dielectric substrates such as glass, quartz and polymers to achieve tunable THz bandpass characteristics. The LMF process comprises two steps: (1) applying ultrathin-film metal deposition, with a typical thickness of 10 nm, on the dielectric substrate; (2) creating a ~100-micron feature pattern on the metal film using nanosecond pulsed laser ablation. Our results demonstrate the use of laser-textured ultra-thin film with newly integrated functional capabilities: (a) highly conductive with ~20 Ω/sq sheet resistance, (b) optically transparent with ~70% transmittance within visible spectrum, and (c) tunable bandpass filtering effect in the THz frequency range. A numerical analysis is performed to help determine the fundamental mechanism of THz bandpass filtering for the LMF-built samples. The scientific findings from this work render an economical and scalable manufacturing technique capable of treating large surface area for multi-functional metamaterials.
more »
« less
- Award ID(s):
- 1762353
- PAR ID:
- 10153618
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a photoinduced reconfigurable metasurface to enable high spatial resolution terahertz (THz) wave modulation. Conventional photoinduced THz wave modulation uses optically induced conductive patterns on a semiconductor substrate to create programmable passive THz devices. The technique, albeit versatile and straightforward, suffers from limited performance resulting from the severe lateral diffusion of the photogenerated carriers that undermines the spatial resolution and conductivity contrast of the photoinduced conductive patterns. The proposed metasurface overcomes the limitation using a metal-jointed silicon mesa array with subwavelength-scaled dimensions on an insulator substrate. The structure physically restrains the lateral diffusion of the photogenerated carriers while ensuring the electrical conductivity between the silicon mesas , which is essential for THz wave modulation. The metasurface creates high-definition photoconductive patterns with dimensions smaller than the diffusion length of photogenerated carriers. The metasurface provides a modulation depth of −20 to −10 dB for the THz waves between 0.2 to 1.2 THz and supports a THz bandpass filter with a tunable central frequency. The new, to the best of our knowledge, design concept will benefit the implementation of reconfigurable THz devices.more » « less
-
Abstract Next-generation terahertz (THz) sources demand lightweight, low-cost, defect-tolerant, and robust components with synergistic, tunable capabilities. However, a paucity of materials systems simultaneously possessing these desirable attributes and functionalities has made device realization difficult. Here we report the observation of asymmetric spintronic-THz radiation in Two-Dimensional Hybrid Metal Halides (2D-HMH) interfaced with a ferromagnetic metal, produced by ultrafast spin current under femtosecond laser excitation. The generated THz radiation exhibits an asymmetric intensity toward forward and backward emission direction whose directionality can be mutually controlled by the direction of applied magnetic field and linear polarization of the laser pulse. Our work demonstrates the capability for the coherent control of THz emission from 2D-HMHs, enabling their promising applications on the ultrafast timescale as solution-processed material candidates for future THz emitters.more » « less
-
Abstract We report a novel approach for realizing tunable/reconfigurable terahertz (THz) mesh filters on the basis of micromachined mesa‐array structures. In this approach, different filter patterns are generated virtually using photogenerated free carriers in a semiconducting mesa‐array structure to achieve superior tunability and reconfigurability. Micromachined mesa‐array structures enable the formation of high fidelity, optically generated mesh filter structures for THz frequencies. To evaluate the proposed filter designs, the optically patterned spatial modulation properties of mesa‐array structures were first evaluated. Reconfigurable mesh filter prototypes were then designed and simulated using silicon mesa arrays with 50 × 50 μm2square mesa unit cells. Simulations show that reconfigurable bandpass filters (BPFs) operating in the frequency range of 108–489 GHz with insertion losses of 0.82–1.13 dB can be achieved. By employing smaller unit cells, the frequency tuning range and filtering performance can be further improved. In addition to BPFs, other filter functionalities can also be realized utilizing the proposed approach. The wide tuning range and reconfigurability of the mesh filters demonstrate that the proposed approach is promising for developing tunable/reconfigurable circuits and components for advanced THz sensing, imaging, and communications.more » « less
-
We present a widely tunable, monolithic terahertz source based on intracavity difference frequency generation within a mid-infrared quantum cascade laser at room temperature. A three-section ridge waveguide laser design with two sampled grating sections and a distributed-Bragg section is used to achieve the terahertz (THz) frequency tuning. Room temperature single mode THz emission with a wide tunable frequency range of 2.6–4.2 THz (∼47% of the central frequency) and THz power up to 0.1 mW is demonstrated, making such device an ideal candidate for THz spectroscopy and sensing.more » « less
An official website of the United States government
