We report on the experimental results of a passively mode-locked vertical external cavity surface emitting laser (VECSEL), implemented in a W-cavity configuration, using a lithium triborate (LBO) crystal for intra-cavity second harmonic generation (SHG) at 528 nm. The W-cavity configuration allows separation of the crystal from the semiconductor saturable absorber mirror (SESAM), enabling independent control over the Gaussian beam sizes at the crystal, chip, and SESAM. This optimized cavity demonstrated a second harmonic pulse width of ~760 fs at a frequency of 465 MHz and 230 mW average output power, resulting in a peak pulse power of 580 W.
more »
« less
Route towards extreme optical pulsation in linear cavity ultrafast fibre lasers
Abstract Pathways towards the generation of extreme optical pulsation in a chaotic transition regime in a linear fibre laser cavity configuration are presented. In a thulium mode-locked fibre laser, extreme events that can be controllably induced by manipulating the cavity birefringence for pulse energies exceeding the single soliton pulse operating regime are studied in detail for the first time. While a solitonic pulsation structure at the fundamental repetition rate is maintained, additional energy is shed in a chaotic manner, leading to broader spectral generation and shorter pulse durations whose behaviour deviates significantly from a classical statistical distribution. These pulses display markedly different characteristics from any previously reported extreme events in fibre lasers associated with multiple solitons and pulse bunching, thus presenting a novel observation of extreme pulsation. Detailed noise studies indicate that significant enhancement of relaxation oscillations, modulation instability and the interplay with reabsorption mechanisms contribute in this transient chaotic regime. The extreme pulsation generated in a compact fibre laser without any additional nonlinear attractors can provide an attractive platform to accelerate the exploration of the underlying physics of the chaos observed in mode-locked laser systems and can lead to novel fibre laser cavity designs.
more »
« less
- Award ID(s):
- 1710849
- PAR ID:
- 10153704
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Armani, Andrea M.; Kudryashov, Alexis V.; Ilchenko, Vladimir S.; Sheldakova, Julia V. (Ed.)Optical microresonators possessing Kerr-type nonlinearity have emerged over the past decade as reliable and versatile sources of optical frequency combs, with varied applications including in the generation of low-phasenoise radio frequency (RF) signals, small-footprint precision timekeeping, and LiDAR. One of the key parameters affecting Kerr microcomb generation in different wavelength ranges is cavity modal dispersion. Dispersion effects such as avoided mode crossings (AMCs) have been shown to greatly limit mode-locked microcomb generation, especially when pumping in close proximity to such disruptions. We present numerical modeling and experimental evidence demonstrating that using an auxiliary laser pump can suppress the detrimental impact of near-pump AMCs. We also report, for the first time to our knowledge, the possibility of the breaking of characteristic soliton steps into two stable branches corresponding to different stable pulse trains arising from the interplay of dichromatic pumping and AMCs. These findings bear significance, particularly for the generation of frequency combs in larger resonators or at smaller wavelengths, such as the visible range, where the cavities become overmoded.more » « less
-
The generation of shaped laser beams, or structured light, is of interest in a wide range of fields, from microscopy to fundamental physics. There are several ways to make shaped beams, most commonly using spatial light modulators comprised of pixels of liquid crystals. These methods have limitations on the wavelength, pulse duration, and average power that can be used. Here we present a method to generate shaped light that can be used at any wavelength from the UV to IR, on ultrafast pulses, and a large range of optical powers. By exploiting the frequency difference between higher-order modes, a result of the Gouy phase, and cavity mode matching, we can selectively couple into a variety of pure and composite higher-order modes. Optical cavities are used as a spatial filter and then combined with sum-frequency generation in a nonlinear crystal as the output coupler to the cavity to create ultrafast, frequency comb structured light.more » « less
-
We present an envelope equation-based approach to obtain analytical scaling laws for the shortest pulse length achievable using radiofrequency (RF)-based bunch compression. The derived formulas elucidate the dependencies on the electron beam energy and beam charge and reveal how relativistic energies are strongly desirable to obtain bunches containing 1 million electrons with single-digit femtosecond pulse lengths. However, the non-linearities associated with the RF curvature and the beam propagation in drift spaces significantly limit the attainability of extreme compression ratios. Therefore, an additional higher frequency RF cavity is implemented, which linearizes the bunch compression, enabling the generation of ultrashort beams in the sub-femtosecond regime.more » « less
-
Abstract Radiofrequency (RF) injection locking and spectral broadening of a terahertz (THz) quantum‐cascade vertical‐external‐cavity surface‐emitting laser (QC‐VECSEL) is demonstrated. An intracryostat VECSEL focusing cavity design is used to enable continuous‐wave lasing with a cavity length over 30 mm, which corresponds to a round‐trip frequency near 5 GHz. Strong RF current modulation is injected to the QC‐metasurface electrical bias to pull and lock the round‐trip frequency. The injection locking range at various RF injection powers is recorded and compared with the injection locking theory. Moreover, the lasing spectrum broadens from 14 GHz in free‐running mode to a maximum spectral width around 110 GHz with 20 dBm of injected RF power. This experimental setup is suitable for further exploration of active mode‐locking and picosecond pulse generation in THz QC‐VECSELs.more » « less
An official website of the United States government
