skip to main content


Title: Network curvature as a hallmark of brain structural connectivity
Abstract

Although brain functionality is often remarkably robust to lesions and other insults, it may be fragile when these take place in specific locations. Previous attempts to quantify robustness and fragility sought to understand how the functional connectivity of brain networks is affected by structural changes, using either model-based predictions or empirical studies of the effects of lesions. We advance a geometric viewpoint relying on a notion of network curvature, the so-called Ollivier-Ricci curvature. This approach has been proposed to assess financial market robustness and to differentiate biological networks of cancer cells from healthy ones. Here, we apply curvature-based measures to brain structural networks to identify robust and fragile brain regions in healthy subjects. We show that curvature can also be used to track changes in brain connectivity related to age and autism spectrum disorder (ASD), and we obtain results that are in agreement with previous MRI studies.

 
more » « less
NSF-PAR ID:
10153763
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
10
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper analyzes the scalp electroencephalogram (EEG) recorded from 14 human subjects with pFC lesions and 20 healthy controls while performing lateral visuospatial working memory tasks to identify the directional brain networks responsible for memory encoding. First, we show that effective connectivity features using directed information (DI) are more accurate and robust than the functional connectivity measure of correlation coefficients in classifying the memory encoding stage from the pretrial phase, with a mean accuracy of 99.36%. Second, we identify the functional segregation of memory encoding to a much smaller sub-network by showing that the top 2.5% of the observed DI features can distinguish memory encoding from the pretrial phase with a mean accuracy of 93.1%. Finally, using graph features, we reveal the increased significance of frontocentral, centroparietal, and temporal regions in memory encoding for subjects with pFC lesions and reduced information flow in the prefrontal, frontal and parietooccipital areas when compared to healthy control. 
    more » « less
  2. Abstract

    Cellular studies indicate that endocannabinoid type‐1 retrograde signaling plays a major role in synaptic plasticity. Disruption of these processes by delta‐9‐tetrahydrocannabinol (THC) could produce alterations either in structural and functional brain connectivity or in their association in cannabis (CB) users. Graph theoretic structural and functional networks were generated with diffusion tensor imaging and resting‐state functional imaging in 37 current CB users and 31 healthy non‐users. The primary outcome measures were coupling between structural and functional connectivity, global network characteristics, association between the coupling and network properties, and measures of rich‐club organization. Structural–functional (SC–FC) coupling was globally preserved showing a positive association in current CB users. However, the users had disrupted associations between SC–FC coupling and network topological characteristics, most perturbed for shorter connections implying region‐specific disruption by CB use. Rich‐club analysis revealed impaired SC–FC coupling in the hippocampus and caudate of users. This study provides evidence of the abnormal SC–FC association in CB users. The effect was predominant in shorter connections of the brain network, suggesting that the impact of CB use or predispositional factors may be most apparent in local interconnections. Notably, the hippocampus and caudate specifically showed aberrant structural and functional coupling. These structures have high CB1 receptor density and may also be associated with changes in learning and habit formation that occur with chronic cannabis use.

     
    more » « less
  3. Abstract

    White matter structural connections are likely to support flow of functional activation or functional connectivity. While the relationship between structural and functional connectivity profiles, here called SC-FC coupling, has been studied on a whole-brain, global level, few studies have investigated this relationship at a regional scale. Here we quantify regional SC-FC coupling in healthy young adults using diffusion-weighted MRI and resting-state functional MRI data from the Human Connectome Project and study how SC-FC coupling may be heritable and varies between individuals. We show that regional SC-FC coupling strength varies widely across brain regions, but was strongest in highly structurally connected visual and subcortical areas. We also show interindividual regional differences based on age, sex and composite cognitive scores, and that SC-FC coupling was highly heritable within certain networks. These results suggest regional structure-function coupling is an idiosyncratic feature of brain organisation that may be influenced by genetic factors.

     
    more » « less
  4. Abstract

    Alzheimer's disease is the most common neurodegenerative disease. The aim of this study is to infer structural changes in brain connectivity resulting from disease progression using cortical thickness measurements from a cohort of participants who were either healthy control, or with mild cognitive impairment, or Alzheimer's disease patients. For this purpose, we develop a novel approach for inference of multiple networks with related edge values across groups. Specifically, we infer a Gaussian graphical model for each group within a joint framework, where we rely on Bayesian hierarchical priors to link the precision matrix entries across groups. Our proposal differs from existing approaches in that it flexibly learns which groups have the most similar edge values, and accounts for the strength of connection (rather than only edge presence or absence) when sharing information across groups. Our results identify key alterations in structural connectivity that may reflect disruptions to the healthy brain, such as decreased connectivity within the occipital lobe with increasing disease severity. We also illustrate the proposed method through simulations, where we demonstrate its performance in structure learning and precision matrix estimation with respect to alternative approaches.

     
    more » « less
  5. Abstract

    The brain's functional architecture and organization undergo continual development and modification throughout adolescence. While it is well known that multiple factors govern brain maturation, the constantly evolving patterns of time‐resolved functional connectivity are still unclear and understudied. We systematically evaluated over 47,000 youth and adult brains to bridge this gap, highlighting replicable time‐resolved developmental and aging functional brain patterns. The largest difference between the two life stages was captured in a brain state that indicated coherent strengthening and modularization of functional coupling within the auditory, visual, and motor subdomains, supplemented by anticorrelation with other subdomains in adults. This distinctive pattern, which we replicated in independent data, was consistently less modular or absent in children and presented a negative association with age in adults, thus indicating an overall inverted U‐shaped trajectory. This indicates greater synchrony, strengthening, modularization, and integration of the brain's functional connections beyond adolescence, and gradual decline of this pattern during the healthy aging process. We also found evidence that the developmental changes may also bring along a departure from the canonical static functional connectivity pattern in favor of more efficient and modularized utilization of the vast brain interconnections. State‐based statistical summary measures presented robust and significant group differences that also showed significant age‐related associations. The findings reported in this article support the idea of gradual developmental and aging brain state adaptation processes in different phases of life and warrant future research via lifespan studies to further authenticate the projected time‐resolved brain state trajectories.

     
    more » « less