skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Classification of Pretrial vs. Encoding stage for Working Memory Task among Subjects with pFC Lesions and Healthy Controls using Directed Information
This paper analyzes the scalp electroencephalogram (EEG) recorded from 14 human subjects with pFC lesions and 20 healthy controls while performing lateral visuospatial working memory tasks to identify the directional brain networks responsible for memory encoding. First, we show that effective connectivity features using directed information (DI) are more accurate and robust than the functional connectivity measure of correlation coefficients in classifying the memory encoding stage from the pretrial phase, with a mean accuracy of 99.36%. Second, we identify the functional segregation of memory encoding to a much smaller sub-network by showing that the top 2.5% of the observed DI features can distinguish memory encoding from the pretrial phase with a mean accuracy of 93.1%. Finally, using graph features, we reveal the increased significance of frontocentral, centroparietal, and temporal regions in memory encoding for subjects with pFC lesions and reduced information flow in the prefrontal, frontal and parietooccipital areas when compared to healthy control.  more » « less
Award ID(s):
1954749
PAR ID:
10400847
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proc. 2022 Asilomar Conference on Signals, Systems and Computers
Page Range / eLocation ID:
1311 to 1315
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes a group-level analysis of 14 subjects with prefrontal cortex (pFC) lesions and 20 healthy controls performing multiple lateralized visuospatial working memory (WM) trials. Using effective brain connectivity measures inferred from directed information (DI) during memory encoding, we first show that DI features can correctly classify 18 control subjects and 11 subjects with pFC lesions, providing an overall accuracy of 85.3%. Second, we show that differential DI, the change in DI during the encoding phase from pretrial, can successfully overcome inter-subject variability and correctly identify the class of all 34 subjects (100% accuracy). These accuracy results are based on two-thirds majority thresholding among all trials. Finally, we use Welch’s t-test to identify the crucial differences in the two classes’ sub-networks responsible for memory encoding. While the inflow of information to the prefrontal region is significant among subjects with pFC lesions, the outflow from the prefrontal to the frontal and central regions is diminished compared to the control subjects. We further identify specific neural pathways that are exclusively activated for each group during the encoding phase. 
    more » « less
  2. This paper describes a group-level classification of 14 patients with prefrontal cortex (pFC) lesions from 20 healthy controls using multi-layer graph convolutional networks (GCN) with features inferred from the scalp EEG recorded from the encoding phase of working memory (WM) trials. We first construct undirected and directed graphs to represent the WM encoding for each trial for each subject using distance correlation- based functional connectivity measures and differential directed information-based effective connectivity measures, respectively. Centrality measures of betweenness centrality, eigenvector centrality, and closeness centrality are inferred for each of the 64 channels from the brain connectivity. Along with the three centrality measures, each graph uses the relative band powers in the five frequency bands - delta, theta, alpha, beta, and gamma- as node features. The summarized graph representation is learned using two layers of GCN followed by mean pooling, and fully connected layers are used for classification. The final class label for a subject is decided using majority voting based on the results from all the subject's trials. The GCN-based model can correctly classify 28 of the 34 subjects (82.35% accuracy) with undirected edges represented by functional connectivity measure of distance correlation and classify all 34 subjects (100% accuracy) with directed edges characterized by effective connectivity measure of differential directed information. 
    more » « less
  3. This paper investigates scalp electroencephalogram (EEG) data from 14 subjects with unilateral prefrontal cortex (pFC) lesions and 20 healthy controls during lateral visuospatial working memory (WM) tasks. The goal is to differentiate the brain networks involved in WM processing between these groups. The EEG recordings are transformed into graph signals, with proximity-weighted brain connectivity measures as edges and centrality measures as nodal features. Graph convolutional network (GCN) layers are used for feature representation, followed by a fully connected layer for classification. The GCN-based model effectively handles nine classification tasks, proving that graph-based network representation is versatile for describing brain interactions. The sparse MI-GCI-based graph model’s accuracy effectively captures the functional segregation of distinct WM tasks. The classifier using mutual information-guided Granger causality index (MI-GCI) with 20% of top edges matched prior classification performance with 67% fewer parameters and 80% less graph density, identifying the correct class of all 34 subjects in group identification using leave-one-out cross-validation and two-thirds majority voting. 
    more » « less
  4. Models of human categorization predict the prefrontal cortex (PFC) serves a central role in category learning. The dorsolateral prefrontal cortex (dlPFC) and ventromedial prefrontal cortex (vmPFC) have been implicated in categorization; however, it is unclear whether both are critical for categorization and whether they support unique functions. We administered three categorization tasks to patients with PFC lesions (mean age, 69.6 years; 5 men, 5 women) to examine how the prefrontal subregions contribute to categorization. These included a rule-based (RB) task that was solved via a unidimensional rule, an information integration (II) task that was solved by combining information from two stimulus dimensions, and a deterministic/probabilistic (DP) task with stimulus features that had varying amounts of category-predictive information. Compared with healthy comparison participants, both patient groups had impaired performance. Impairments in the dlPFC patients were largest during the RB task, whereas impairments in the vmPFC patients were largest during the DP task. A hierarchical model was fit to the participants’ data to assess learning deficits in the patient groups. PFC damage was correlated with a regularization term that limited updates to attention after each trial. Our results suggest that the PFC, as a whole, is important for learning to orient attention to relevant stimulus information. The dlPFC may be especially important for rule-based learning, whereas the vmPFC may be important for focusing attention on deterministic (highly diagnostic) features and ignoring less predictive features. These results support overarching functions of the dlPFC in executive functioning and the vmPFC in value-based decision-making. 
    more » « less
  5. Abstract Resting-state functional connectivity (RSFC) has been widely adopted for individualized trait prediction. However, multiple confounding factors may impact the predicted brain-behavior relationships. In this study, we investigated the impact of 4 confounding factors including time series length, functional connectivity (FC) type, brain parcellation choice, and variance of the predicted target. The data from Human Connectome Project including 1,206 healthy subjects were employed, with 3 cognitive traits including fluid intelligence, working memory, and picture vocabulary ability as the prediction targets. We compared the prediction performance under different settings of these 4 factors using partial least square regression. Results demonstrated appropriate time series length (300 time points) and brain parcellation (independent component analysis, ICA100/200) can achieve better prediction performance without too much time consumption. FC calculated by Pearson, Spearman, and Partial correlation achieves higher accuracy and lower time cost than mutual information and coherence. Cognitive traits with larger variance among subjects can be better predicted due to the well elaboration of individual variability. In addition, the beneficial effects of increasing scan duration to prediction partially arise from the improved test–retest reliability of RSFC. Taken together, the study highlights the importance of determining these factors in RSFC-based prediction, which can facilitate standardization of RSFC-based prediction pipelines going forward. 
    more » « less