skip to main content

Title: Investigating Ammonium By-product Removal for Ureolytic Bio-cementation Using Meter-scale Experiments

Microbially Induced Calcite Precipitation (MICP), or bio-cementation, is a promising bio-mediated technology that can improve the engineering properties of soils through the precipitation of calcium carbonate. Despite significant advances in the technology, concerns regarding the fate of produced NH4+by-products have remained largely unaddressed. In this study, five 3.7-meter long soil columns each containing one of three different soils were improved using ureolytic bio-cementation, and post-treatment NH4+by-product removal was investigated during the application of 525 L of a high pH and high ionic strength rinse solution. During rinsing, reductions in aqueous NH4+were observed in all columns from initial concentrations between ≈100 mM to 500 mM to final values between ≈0.3 mM and 20 mM with higher NH4+concentrations observed at distances furthest from the injection well. In addition, soil Vsmeasurements completed during rinse injections suggested that no significant changes in cementation integrity occurred during NH4+removal. After rinsing and a 12 hour stop flow period, all column solutions achieved cumulative NH4+removals exceeding 97.9%. Soil samples collected following rinsing, however, contained significant sorbed NH4+masses that appeared to have a near linear relationship with surrounding aqueous NH4+concentrations. While these results suggest that NH4+can be successfully removed from bio-cemented soils, acceptable limits for NH4+aqueous concentrations and sorbed NH4+masses will likely be more » governed by site-specific requirements and may require further investigation and refinement of the developed techniques.

« less
; ; ; ; ; ;
Publication Date:
Journal Name:
Scientific Reports
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Microbially Induced Calcite Precipitation (MICP) is a bio-mediated cementation process that uses microbial enzymatic activity to catalyze the precipitation of CaCO3 minerals on soil particle surfaces and contacts. Extensive research has focused on understanding various aspects of MICP-treated soils including soil behavioral enhancements and process reaction chemistry, however, almost no research has explored the permanence of bio-cemented geomaterials. As the technology matures, an improved understanding of the longevity of bio-cementation improved soils will be critical towards identifying favorable field applications, quantifying environmental impacts, and understanding their long-term performance. In this study, a series of batch experiments were performed to investigate the dissolution kinetics of CaCO3-based bio- cemented sands with the specific aim of incorporating these behaviors into geochemical models. All batch experiments involved previously bio-cemented poorly graded sands that were exposed to different dissolution treatments intended to explore the magnitude and rate of CaCO3 dissolution as a function of acid type, concentration, initial pH, and other factors. During experiments, changes in solution pH and calcium concentrations indicative of CaCO3 dissolution were monitored. After experiments, aqueous measurements were compared to those simulated using two different dissolution kinetic frameworks. While not exhaustive, the results of these experiments suggest that the dissolution behaviormore »of bio-cementation can be well-approximated using existing chemically controlled kinetic models, particularly when surrounding solutions are more strongly buffered.« less
  2. Abstract

    Microbially-induced calcium carbonate precipitation (MICP) is a bio-cementation process that can improve the engineering properties of granular soils through the precipitation of calcium carbonate (CaCO3) minerals on soil particle surfaces and contacts. The technology has advanced rapidly as an environmentally conscious soil improvement method, however, our understanding of the effect of changes in field-representative environmental conditions on the physical and chemical properties of resulting precipitates has remained limited. An improved understanding of the effect of subsurface geochemical and soil conditions on process reaction kinetics and the morphology and mineralogy of bio-cementation may be critical towards enabling successful field-scale deployment of the technology and improving our understanding of the long-term chemical permanence of bio-cemented soils in different environments. In this study, thirty-five batch experiments were performed to specifically investigate the influence of seawater ions and varying soil materials on the mineralogy, morphology, and reaction kinetics of ureolytic bio-cementation. During experiments, differences in reaction kinetics were quantified to identify conditions inhibiting CaCO3precipitation and ureolysis. Following experiments, scanning electron microscopy, x-ray diffraction, and chemical composition analyses were employed to quantify differences in mineralogical compositions and material morphology. Ions present in seawater and variations in soil materials were shown to significantly influence ureolyticmore »activity and precipitate mineralogy and morphology, however, calcite remained the predominant CaCO3polymorph in all experiments with relative percentages exceeding 80% by mass in all precipitates.

    « less
  3. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  4. Numerous laboratory studies in the past decade have demonstrated the ability of microbially induced calcite precipitation (MICP), a bio-mediated soil improvement method, to favorably transform a soil’s engineering properties including increased shear strength and stiffness with reductions in hydraulic conductivity and porosity. Despite significant advances in treatment application techniques and characterization of post-treatment engineering properties, relationships between biogeochemical conditions during precipitation and post-treatment material properties have remained poorly understood. Bacterial augmentation, stimulation, and cementation treatments can vary dramatically in their chemical constituents, concentrations, and ratios between researchers, with specific formulas oftentimes perpetuating despite limited understanding of their engineering implications. In this study, small-scale batch experiments were used to systematically investigate how biogeochemical conditions during precipitate synthesis may influence resulting bio-cementation and related material engineering behaviors. Aqueous solution chemistry was monitored in time to better understand the relationship between the kinetics of ureolysis and calcium carbonate precipitation, and resulting precipitates. Following all experiments, precipitates were evaluated using x-ray diffraction and scanning electron microscopy to characterize mineralogy and morphology. Results obtained from these investigations are expected to help identify the primary chemical and biological factors during synthesis that may control bio-cementation material properties and
  5. Abstract
    Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred metersMore>>