skip to main content


Title: The Median Isn’t the Message: soil nutrient hot spots have a disproportionate influence on biogeochemical structure across years, seasons, and depths
Abstract

Soil nutrient distribution is heterogeneous in space and time, potentially altering nutrient acquisition by trees and microorganisms. Ecologists have distinguished “hot spots” (HSs) as areas with enhanced and sustained rates of nutrient fluxes relative to the surrounding soil matrix. We evaluated the spatial and temporal patterns in nutrient flux HSs in two mixed-conifer forest soils by repeatedly sampling the soil solution at the same spatial locations (horizontally and vertically) over multiple seasons and years using ion exchange resins incubated in situ. The climate of these forests is Mediterranean, with intense fall rains occurring following summers with little precipitation, and highly variable winter snowfall. Hot spots formed most often for NO3and Na+. Although nutrient HSs often occurred in the same spatial location multiple times, HSs persisted more often for PO43−NH4+, and NO3, and were more transient for Ca2+, Mg2+, and Na+. Sampling year (annual precipitation ranged from 558 to 1223 mm) impacted the occurrence of HSs for most nutrients, but season was only significant for PO43−, NH4+, NO3, and Na+, with HSs forming more often after fall rains than after spring snowmelt. The frequency of HSs significantly decreased with soil depth for all nutrients, forming most commonly immediately below the surficial organic horizon. Although HSs accounted for less than 17% of the sampling volume, they were responsible for 56–88% of PO43−, NH4+, and NO3resin fluxes. Our results suggest that macronutrient HSs have a disproportional contribution to soil biogeochemical structure, with implications for vegetation nutrient acquisition strategies and biogeochemical models.

Graphical abstract

 
more » « less
NSF-PAR ID:
10485737
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Biogeochemistry
Volume:
167
Issue:
1
ISSN:
1573-515X
Format(s):
Medium: X Size: p. 75-95
Size(s):
["p. 75-95"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Over the past 30 plus years, the Arctic has warmed at a rate of 0.6°C per decade. This has resulted in considerable permafrost thaw and alterations of hydrological and biogeochemical processes. Coincident with these changes, recent studies document increases in annual fluxes of inorganic nutrients in larger Arctic rivers. Changing nutrient fluxes in Arctic rivers have been largely attributed to warming‐induced active layer expansion and newly exposed subsurface source areas. However, the ability of Arctic headwater streams to modulate inorganic nutrient patterns manifested in larger rivers remains unresolved. We evaluated environmental conditions, stream ecosystem metabolism, and nutrient uptake in three headwater streams of the Alaskan Arctic to quantify patterns of retention of inorganic nitrogen (N) and phosphorous (P). We observed elevated ambient nitrate‐N (NO3‐N) concentrations in late summer/early fall in two of three experimental stream reaches. We observed detectable increases in uptake as a result of nutrient addition in 88% of PO4‐P additions (n = 25), 38% of NH4‐N additions (n = 24), and 24% of NO3‐N additions (n = 25). We observed statistically significant relationships between NH4‐N uptake and ecosystem respiration, and PO4‐P uptake and gross primary productivity. Although these headwater streams demonstrate ability to control downstream transport of PO4‐P, we observed little evidence the same holds for dissolved inorganic N. Consequently, our results suggest that continued increases in terrestrial to aquatic N transfer in Arctic headwater landscapes are likely to be evident in larger Arctic rivers, in‐network lakes, and coastal environments.

     
    more » « less
  2. Abstract

    Leaf‐cutter ants are a prominent feature in Neotropical ecosystems, but a comprehensive assessment of their effects on ecosystem functions is lacking. We reviewed the literature and used our own recent findings to identify knowledge gaps and develop a framework to quantify the effects of leaf‐cutter ants on ecosystem processes.

    Leaf‐cutter ants disturb the soil structure during nest excavation changing soil aeration and temperature. They mix relatively nutrient‐poor soil from deeper layers with the upper organic‐rich layers increasing the heterogeneity of carbon and nutrients within nest soils.

    Leaf‐cutter ants account for about 25% of all herbivory in Neotropical forest ecosystems, moving 10%–15% of leaves in their foraging range to their nests. Fungal symbionts transform the fresh, nutrient‐rich vegetative material to produce hyphal nodules to feed the ants. Organic material from roots and arbuscular mycorrhizal fungi enhances carbon and nutrient turnover in nest soils and creates biogeochemical hot spots. Breakdown of organic matter, microbial and ant respiration, and nest waste material decomposition result in increased CO2, CH4,and N2O production, but the build‐up of gases and heat within the nest is mitigated by the tunnel network ventilation system. Nest ventilation dynamics are challenging to measure without bias, and improved sensor systems would likely solve this problem.

    Canopy gaps above leaf‐cutter ant nests change the light, wind and temperature regimes, which affects ecosystem processes. Nests differ in density and size depending on colony age, forest type and disturbance level and change over time resulting in spatial and temporal changes of ecosystem processes. These characteristics remain a challenge to evaluate rapidly and non‐destructively.

    Addressing the knowledge gaps identified in this synthesis will bring insights into physical and biological processes driving biogeochemical cycles at the nest and ecosystem scale and will improve our understanding of ecosystem biogeochemical heterogeneity and larger scale ecological phenomena.

    Aplain language summaryis available for this article.

     
    more » « less
  3. Abstract

    Stream restoration efforts have aimed at increasing hydraulic residence time (HRT) and transient storage (TS) to enhance nutrient uptake, but there have been few controlled studies quantifying HRT and TS influences on nutrient uptake dynamics. We assessed the effects of HRT and TS on ammonium (NH4+) and phosphate (PO43−) uptake through controlled experiments in an artificial channel draining a pristine tropical stream. We experimentally dammed the channel with artificial weirs, to progressively increase HRT, and performed NH4+and PO43−additions to estimate uptake each time a weir was added. We also ran consecutive additions of NH4+and PO43−with no weirs, to evaluate short‐term changes in uptake metrics. Also, NH4+was injected alone to assess potential nitrification. We observed that NH4+and PO43−uptake rates were much greater in the very first addition, probably due to luxury uptake. The weirs increased mean HRT (from 8.5 to 12 min) and depth (from 6.5 to 8.9 cm) and decreased mean water velocity (0.40–0.28 m s−1). Surprisingly, damming decreased the relative size of transient storage zone (storage zone area/channel area,As/Afrom 0.72 to 0.55), indicating that greater depth increasedA, but notAs. Greater HRT increased uptake rates and velocities of both nutrients (p < 0.05). The NH4+conversion to NO3was estimated at 18% of NH4+consumption, indicating that joint additions to measure NH4+and NO3uptake would not be feasible in this system. Our results suggest that increases in HRT can lead to a greater short‐term retention of nutrients, with implications for stream management and restoration initiatives.

     
    more » « less
  4. Abstract

    Within fluvial networks, lakes can be sinks or sources of dissolved organic carbon (DOC) and nutrients, yet the controls over sink‐source behavior remain unclear. We investigated the influence that an in‐network lake exerted on DOC and nutrient export. Our investigation consisted of: (1) injecting a conservative tracer to determine lake travel times and flow paths; (2) sampling lake inflow, outflow, and surrounding groundwater to determine water and nutrient budgets; and, (3) sampling internal lake profiles to ascertain in‐lake physico‐chemical patterns through time. Conservative tracer data indicated considerable in‐lake retention and combined with inflow‐outflow discharge measurements revealed a decoupling of kinematic and solute pulses. Nitrate (NO3) was the dominant form of dissolved inorganic nitrogen (DIN) at lake inflow whereas ammonium (NH4) became the dominant component at lake outflow. The lake was a sink for NO3‐N and PO4, but a source for NH4‐N, DON, TDN, and DOC. We observed hydrologic controls on DOC concentrations and export patterns, but redox controls on DIN dynamics. Our results indicate that lakes within fluvial networks can be sources of dissolved organic material and reduced nitrogen (NH4) while simultaneously being sinks for NO3‐N and PO4‐P. Determining controls on sink‐source behavior and the cumulative effect of lakes on DOC and nutrient budgets is a necessary first step toward improved understanding of the role of lakes in network‐ to regional‐scale dynamics.

     
    more » « less
  5. Biogeochemical properties of soils play a crucial role in soil and stream chemistry throughout a watershed. How water interacts with soils during subsurface flow can have impacts on water quality, thus, it is fundamental to understand where and how certain soil water chemical processes occur within a catchment. In this study, ~200 soil samples were evaluated throughout a small catchment in the Front Range of Colorado, USA to examine spatial and vertical patterns in major soil solutes among different landscape units: riparian areas, alluvial/colluvial fans, and steep hillslopes. Solutes were extracted from the soil samples in the laboratory and analyzed for major cation (Li, K, Mg, Br, and Ca) and anion (F, Cl, NO 2 , NO 3 , PO 4 , and SO 4 ) concentrations using ion chromatography. Concentrations of most solutes were greater in near surface soils (10 cm) than in deeper soils (100 cm) across all landscape units, except for F which increased with depth, suggestive of surface accumulation processes such as dust deposition or enrichment due to biotic cycling. Potassium had the highest variation between depths, ranging from 1.04 mg/l (100 cm) to 3.13 mg/l (10 cm) sampled from riparian landscape units. Nearly every solute was found to be enriched in riparian areas where vegetation was visibly denser, with higher mean concentrations than the hillslopes and fans, except for NO 3 which had higher concentrations in the fans. Br, NO 2 , and PO 4 concentrations were often below the detectable limit, and Li and Na were not variable between depths or landscape units. Ratioed stream water concentrations (K:Na, Ca:Mg, and NO 3 :Cl) vs. discharge relationships compared to the soil solute ratios indicated a hydraulic disconnection between the shallow soils (<100 cm) and the stream. Based on the comparisons among depths and landscape units, our findings suggest that K, Ca, F, and NO 3 solutes may serve as valuable tracers to identify subsurface flowpaths as they are distinct among landscape units and depth within this catchment. However, interflow and/or shallow groundwater flow likely have little direct connection to streamflow generation. 
    more » « less