skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anomalous Stranski-Krastanov growth of (111)-oriented quantum dots with tunable wetting layer thickness
Abstract Driven by tensile strain, GaAs quantum dots (QDs) self-assemble on In0.52Al0.48As(111)A surfaces lattice-matched to InP substrates. In this study, we show that the tensile-strained self-assembly process for these GaAs(111)A QDs unexpectedly deviates from the well-known Stranski-Krastanov (SK) growth mode. Traditionally, QDs formed via the SK growth mode form on top of a flat wetting layer (WL) whose thickness is fixed. The inability to tune WL thickness has inhibited researchers’ attempts to fully control QD-WL interactions in these hybrid 0D-2D quantum systems. In contrast, using microscopy, spectroscopy, and computational modeling, we demonstrate that for GaAs(111)A QDs, we can continually increase WL thickness with increasing GaAs deposition, even after the tensile-strained QDs (TSQDs) have begun to form. This anomalous SK behavior enables simultaneous tuning of both TSQD size and WL thickness. No such departure from the canonical SK growth regime has been reported previously. As such, we can now modify QD-WL interactions, with future benefits that include more precise control of TSQD band structure for infrared optoelectronics and quantum optics applications.  more » « less
Award ID(s):
1806311
PAR ID:
10153799
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We have investigated the origins of photoluminescence from quantum dot (QD) layers prepared by alternating depositions of sub-monolayers and a few monolayers of size-mismatched species, termed as sub-monolayer (SML) epitaxy, in comparison with their Stranski–Krastanov (SK) QD counterparts. Using measured nanostructure sizes and local In-compositions from local-electrode atom probe tomography as input into self-consistent Schrödinger–Poisson simulations, we compute the 3D confinement energies, probability densities, and photoluminescence (PL) spectra for both InAs/GaAs SML- and SK-QD layers. A comparison of the computed and measured PL spectra suggests one-dimensional electron confinement, with significant 3D hole localization in the SML-QD layers that contribute to their enhanced PL efficiency in comparison to their SK-QD counterparts. 
    more » « less
  2. Near-infrared electroluminescence of InGaN quantum dots (QDs) formed by controlled growth on photoelectrochemical (PEC) etched QD templates is demonstrated. The QD template consists of PEC InGaN QDs with high density and controlled sizes, an AlGaN capping layer to protect the QDs, and a GaN barrier layer to planarize the surface. Scanning transmission electron microscopy (STEM) of Stranski–Krastanov (SK) growth on the QD template shows high-In-content InGaN QDs that align vertically to the PEC QDs due to localized strain. A high-Al-content Al 0.9 Ga 0.1 N capping layer prevents the collapse of the SK QDs due to intermixing or decomposition during higher temperature GaN growth as verified by STEM. Growth of low-temperature (830°C) p-type layers is used to complete the p-n junction and further ensure QD integrity. Finally, electroluminescence shows a significant wavelength shift (800 nm to 500 nm), caused by the SK QDs’ tall height, high In content, and strong polarization-induced electric fields. 
    more » « less
  3. Abstract Deterministic positioning single site-controlled high symmetric InGaAs quantum dots (QDs) in (111)B-oriented GaAs photonic crystal cavities with nanometer-scale accuracy provides an idea component for building integrated quantum photonic circuits. However, it has been a long-standing challenge of improving cavityQ-factors in such systems. Here, by optimizing the trade-off between the cavity loss and QD spectral quality, we demonstrate our site-controlled QD-nanocavity system operating in the intermediate coupling regime mediated by phonon scattering, with the dynamic coexistence of strong and weak coupling. The cavity-exciton detuning-dependent micro-photoluminescence spectrum reveals concurrence of a trend of exciton-polariton mode avoided crossing, as a signature of Rabi doublet of the strongly coupled system. Meanwhile, a trend of keeping constant or slight blue shift of coupled exciton–cavity mode(CM) energy across zero-detuning is ascribed to the formation of collective states mediated by phonon-assisted coupling, and their rare partial out-of-synchronization linewidth-narrowing is linked to their coexisting strong-weak coupling regime. We further reveal the pump power-dependent anti-bunching photon statistical dynamics of this coexisting strong-weak coupled system and the optical features of strongly confined exciton-polaritons, and dark-exciton-like states. These observations demonstrate the potential capabilities of site-controlled QD-cavity systems as deterministic quantum nodes for on-chip quantum information processing and provide guidelines for future device optimization for achieving the strong coupling regime. 
    more » « less
  4. Abstract Colloidal all‐inorganic lead halide perovskite quantum dots (QDs) are high‐performance light‐emitting materials with size‐dependent optical properties and can be readily synthesized by mixing ionic precursors. However, the low formation energy of the perovskite lattice makes their growth too fast to control under regular reaction conditions. Diffusion‐regulated CsPbBr3perovskite QD growth is reported on a nanometer‐sized liquid/liquid (L/L) interface supported in a micropipette tip without long‐chain organic ligands. The precursors are divided into two immiscible solutions across the L/L interface to avoid additional nucleation, and the QD growth kinetics are regulated by the constrained cationic diffusion field depending on the size of the micropipette tip. QDs with unprecedentedly small sizes (2.7 nm) are obtained due to the slowed‐down growth rates. The synthesis approach demonstrates the potential of micro‐controlled colloidal QD synthesis for mechanistic studies and micro‐fabrications. 
    more » « less
  5. null (Ed.)
    InAs quantum dots (QDs) embedded into a waveguiding GaAs semiconductor matrix may produce scintillation detectors with exceptional speed and yield, making them valuable for nuclear security, medical imaging, and high energy physics applications. In this work, we developed thick (~25um) epitaxial heterostructres with high luminescence efficiency composed of self-assembled nano-engineered InAs QDs grown by molecular beam epitaxy. The bulk GaAs acts as a stopping material for incident particles and as a waveguide when layer-transferred onto a low-index substrate. Waveguiding and self-absorption (<1cm-1) were studied using photoluminescence with scanning laser excitation and modeled with ray optics approximation and geometrical coupling of high-index waveguide to a collection fiber. Scintillating signals from alpha-particles were analyzed with an external photodiode (PD) and an integrated PD which provided an improved optical coupling. The mean charge collected by the integrated PD corresponded to 5×1e4 photoelectrons per 1 MeV of deposited energy, or ~20% of the theoretically achievable light yield. Combined with the previously measured QD scintillation time of 0.3-0.6 ns, this makes the InAs/GaAs QD heterostructures the fastest high yield scintillation material reported. 
    more » « less