skip to main content


Title: Substrate composition directs slime molds behavior
Abstract

Cells, including unicellulars, are highly sensitive to external constraints from their environment. Amoeboid cells change their cell shape during locomotion and in response to external stimuli. Physarum polycephalum is a large multinucleated amoeboid cell that extends and develops pseudopods. In this paper, changes in cell behavior and shape were measured during the exploration of homogenous and non-homogenous environments that presented neutral, and nutritive and/or adverse substances. In the first place, we developed a fully automated image analysis method to measure quantitatively changes in both migration and shape. Then we measured various metrics that describe the area covered, the exploration dynamics, the migration rate and the slime mold shape. Our results show that: (1) Not only the nature, but also the spatial distribution of chemical substances affect the exploration behavior of slime molds; (2) Nutritive and adverse substances both slow down the exploration and prevent the formation of pseudopods; and (3) Slime mold placed in an adverse environment preferentially occupies previously explored areas rather than unexplored areas using mucus secretion as a buffer. Our results also show that slime molds migrate at a rate governed by the substrate up until they get within a critical distance to chemical substances.

 
more » « less
Award ID(s):
1552368
NSF-PAR ID:
10153846
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The acellular slime moldPhysarum polycephalumprovides an excellent model to study network formation, as its network is remodelled constantly in response to mass gain/loss and environmental conditions. How slime molds networks are built and fuse to allow for efficient exploration and adaptation to environmental conditions is still not fully understood. Here, we characterize the network organization of slime molds exploring homogeneous neutral, nutritive and adverse environments. We developed a fully automated image analysis method to extract the network topology and followed the slime molds before and after fusion. Our results show that: (1) slime molds build sparse networks with thin veins in a neutral environment and more compact networks with thicker veins in a nutritive or adverse environment; (2) slime molds construct long, efficient and resilient networks in neutral and adverse environments, whereas in nutritive environments, they build shorter and more centralized networks; and (3) slime molds fuse rapidly and establish multiple connections with their clone-mates in a neutral environment, whereas they display a late fusion with fewer connections in an adverse environment. Our study demonstrates that slime mold networks evolve continuously via pruning and reinforcement, adapting to different environmental conditions.

     
    more » « less
  2. We investigate the dynamics of cell shape and analyze the actin and myosin distributions of cells exhibiting cortical density traveling waves. These waves propagate by repeated cycles of cortical compression (folding) and dilation (unfolding) that lead to periodic protrusions (oscillations) of the cell boundary. The focus of our detailed analysis is the remarkable periodicity of this phenotype, in which both the overall shape transformation and distribution of actomyosin density are repeated from cycle to cycle even though the characteristics of the shape transformation vary significantly for different regions of the cell. We show, using correlation analysis, that during traveling wave propagation cortical actin and plasma membrane densities are tightly coupled at each point along the cell periphery. We also demonstrate that the major protrusion appears at the wave trailing edge just after the actin cortex density has reached a maximum. Making use of the extraordinary periodicity, we employ latrunculin to demonstrate that sequestering actin monomers can have two distinct effects: low latrunculin concentrations can trigger and enhance traveling waves but higher concentrations of this drug retard the waves. The fundamental mechanism underlying this periodically protruding phenotype, involving folding and unfolding of the cortex‐membrane couple, is likely to hold important clues for diverse phenomena including cell division and amoeboid‐type migration. © 2015 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc.

     
    more » « less
  3. Precision glass molding is a viable process for the cost-effective volume production of freeform optics. Process development is complex, requiring iterative trials of mold manufacture and metrology, glass mold prototyping, metrology and functional testing. This paper describes the first iteration in the development of a process for an Alvarez lens for visible light. The challenges of this optic are extremely tight band-RMS tolerances on a freeform shape over a maximum clear aperture of 45 mm, a 16:1 aspect ratio and a freeform departure of 329 micrometers. A freeform glass mold for an Alvarez lens was manufactured by coordinated-axis diamond turning in a mold substrate using a custom tool error correction method. The results of prototype precision glass molding are also reported. Mold surfaces and molded optical surfaces are analyzed with scanning white light interferometry. A surface roughness of approximately 3 nm RMS is obtained for both the mold substrate and the glass optic with high-fidelity reproduction of micro-surface structure in the glass. These measurements also identify challenging areas, particularly the presence of mid-spatial frequency errors on the optic originating from the machine thermal control system. The form of the molds was also measured with a profilometer; however, the mold surface does not agree with the expected prescription with an overall deviation in form of approximately 10 μm. The machining process is expected to have sub-micrometer error and the sources of this discrepancy are still being determined. Metrology of the glass optics is currently in progress. 
    more » « less
  4. null (Ed.)
    Shear flow-induced migration is an important physiological phenomenon experienced by multiple cell types, including leukocytes and cancer cells. However, molecular mechanisms by which cells sense and directionally migrate in response to mechanical perturbation are not well understood. Dictyostelium discoideum social amoeba, a well-established model for studying amoeboid-type migration, also exhibits directional motility when exposed to shear flow, and this behavior is preceded by rapid and transient activation of the same signal transduction network that is activated by chemoattractants. The initial response, which can also be observed following brief 2 s stimulation with shear flow, requires an intact actin cytoskeleton; however, what aspect of the cytoskeletal network is responsible for sensing and/or transmitting the signal is unclear. We investigated the role of actin crosslinkers filamin and α-actinin by analyzing initial shear flow-stimulated responses in cells with or without these proteins. Both filamin and α-actinin showed rapid and transient relocalization from the cytosol to the cortex following shear flow stimulation. Using spatiotemporal analysis of Ras GTPase activation as a readout of signal transduction network activity, we demonstrated that lack of α-actinin did not reduce, and, in fact, slightly improved the response to acute mechanical stimulation compared to cells expressing α-actinin. In contrast, shear flow-induced Ras activation was significantly more robust in filamin-null cells rescued with filamin compared to cells expressing empty vector. Reduced responsiveness appeared to be specific to mechanical stimuli and was not due to a change in the basal activity since response to global stimulation with a chemoattractant and random migration was comparable between cells with or without filamin. Finally, while filamin-null cells rescued with filamin efficiently migrated upstream when presented with continuous flow, cells lacking filamin were defective in directional migration. Overall, our study suggests that filamin, but not α-actinin, is involved in sensing and/or transmitting mechanical stimuli that drive directed migration; however, other components of the actin cytoskeleton likely also contribute to the initial response since filamin-null cells were still able to activate the signal transduction network. These findings could have implications for our fundamental understanding of shear flow-induced migration of leukocytes, cancer cells and other amoeboid-type cells. 
    more » « less
  5. Abstract

    Fish basal epidermal cells, known as keratocytes, are well‐suited for cell migration studies. In vitro, isolated keratocytes adopt a stereotyped shape with a large fan‐shaped lamellipodium and a nearly spherical cell body. However, in their native in vivo environment, these cells adopt a significantly different shape during their rapid migration toward wounds. Within the epidermis, keratocytes experience two‐dimensional (2D) confinement between the outer epidermal cell layer and the basement membrane; these two deformable surfaces constrain keratocyte cell bodies to be flatter in vivo than in isolation. In vivo keratocytes also exhibit a relative elongation of the front‐to‐back axis and substantially more lamellipodial ruffling, as compared to isolated cells. We have explored the effects of 2D confinement, separated from other in vivo environmental cues, by overlaying isolated cells with an agarose hydrogel with occasional spacers, or with a ceiling made of polydimethylsiloxane (PDMS) elastomer. Under these conditions, isolated keratocytes more closely resemble the in vivo migratory shape phenotype, displaying a flatter apical‐basal axis and a longer front‐to‐back axis than unconfined keratocytes. We propose that 2D confinement contributes to multiple dimensions of in vivo keratocyte shape determination. Further analysis demonstrates that confinement causes a synchronous 20% decrease in both cell speed and volume. Interestingly, we were able to replicate the 20% decrease in speed using a sorbitol hypertonic shock to shrink the cell volume, which did not affect other aspects of cell shape. Collectively, our results suggest that environmentally imposed changes in cell volume may influence cell migration speed, potentially by perturbing physical properties of the cytoplasm.

     
    more » « less