skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Programmable coupled oscillators for synchronized locomotion
Abstract The striking similarity between biological locomotion gaits and the evolution of phase patterns in coupled oscillatory network can be traced to the role of central pattern generator located in the spinal cord. Bio-inspired robotics aim at harnessing this control approach for generation of rhythmic patterns for synchronized limb movement. Here, we utilize the phenomenon of synchronization and emergent spatiotemporal pattern from the interaction among coupled oscillators to generate a range of locomotion gait patterns. We experimentally demonstrate a central pattern generator network using capacitively coupled Vanadium Dioxide nano-oscillators. The coupled oscillators exhibit stable limit-cycle oscillations and tunable natural frequencies for real-time programmability of phase-pattern. The ultra-compact 1 Transistor-1 Resistor implementation of oscillator and bidirectional capacitive coupling allow small footprint area and low operating power. Compared to biomimetic CMOS based neuron and synapse models, our design simplifies on-chip implementation and real-time tunability by reducing the number of control parameters.  more » « less
Award ID(s):
1640081
PAR ID:
10153927
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
10
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper, we present a new locomotion control method for soft robot snakes. Inspired by biological snakes, our control architecture is composed of two key modules: A reinforcement learning (RL) module for achieving adaptive goal-tracking behaviors with changing goals, and a central pattern generator (CPG) system with Matsuoka oscillators for generating stable and diverse locomotion patterns. The two modules are interconnected into a closed-loop system: The RL module, analogizing the locomotion region located in the midbrain of vertebrate animals, regulates the input to the CPG system given state feedback from the robot. The output of the CPG system is then translated into pressure inputs to the pneumatic actuators of the soft snake robot. Based on the fact that the oscillation frequency and wave amplitude of the Matsuoka oscillator can be independently controlled under different time scales, we further adapt the option-critic framework to improve the learning performance measured by optimality and data efficiency. The performance of the proposed controller is experimentally validated with both simulated and real soft snake robots. 
    more » « less
  2. Abstract Similar activity patterns may arise from model neural networks with distinct coupling properties and individual unit dynamics. These similar patterns may, however, respond differently to parameter variations and specifically to tuning of inputs that represent control signals. In this work, we analyze the responses resulting from modulation of a localized input in each of three classes of model neural networks that have been recognized in the literature for their capacity to produce robust three-phase rhythms: coupled fast-slow oscillators, near-heteroclinic oscillators, and threshold-linear networks. Triphasic rhythms, in which each phase consists of a prolonged activation of a corresponding subgroup of neurons followed by a fast transition to another phase, represent a fundamental activity pattern observed across a range of central pattern generators underlying behaviors critical to survival, including respiration, locomotion, and feeding. To perform our analysis, we extend the recently developed local timing response curve (lTRC), which allows us to characterize the timing effects due to perturbations, and we complement our lTRC approach with model-specific dynamical systems analysis. Interestingly, we observe disparate effects of similar perturbations across distinct model classes. Thus, this work provides an analytical framework for studying control of oscillations in nonlinear dynamical systems and may help guide model selection in future efforts to study systems exhibiting triphasic rhythmic activity. 
    more » « less
  3. The complexity associated with the control of highly-articulated legged robots scales quickly as the number of joints increases. Traditional approaches to the control of these robots are often impractical for many real-time applications. This work thus presents a novel sampling-based planning ap- proach for highly-articulated robots that utilizes a probabilistic graphical model (PGM) to infer in real-time how to optimally modify goal-driven, locomotive behaviors for use in closed-loop control. Locomotive behaviors are quantified in terms of the parameters associated with a network of neural oscillators, or rather a central pattern generator (CPG). For the first time, we show that the PGM can be used to optimally modulate different behaviors in real-time (i.e., to select of optimal choice of parameter values across the CPG model) in response to changes both in the local environment and in the desired control signal. The PGM is trained offline using a library of optimal behaviors that are generated using a gradient-free optimization framework. 
    more » « less
  4. The central pattern generator (CPG) is a group of interconnected neurons, existing in biological systems as a control center for oscillatory behaviors. We propose a new approach based on the multivariable harmonic balance to characterize the relationship between the oscillation profile (frequency, amplitude, phase) and interconnections within the CPG, modeled as weakly coupled oscillators. In particular, taking advantage of the weak coupling, we formulate a low-dimensional matrix whose eigenvalue/eigenvector capture the perturbation in the oscillation profile due to the coupling. Then we develop an algorithm to estimate the perturbed oscillation profile of a given CPG, and suggest an optimization to synthesize the interconnections to produce a given oscillation profile. 
    more » « less
  5. Abstract The ability to finely manipulate spatiotemporal patterns displayed in neuronal populations is critical for understanding and influencing brain functions, sleep cycles, and neurological pathologies. However, such control tasks are challenged not only by the immense scale but also by the lack of real-time state measurements of neurons in the population, which deteriorates the control performance. In this paper, we formulate the control of dynamic structures in an ensemble of neuron oscillators as a tracking problem and propose a principled control technique for designing optimal stimuli that produce desired spatiotemporal patterns in a network of interacting neurons without requiring feedback information. We further reveal an interesting presentation of information encoding and processing in a neuron ensemble in terms of its controllability property. The performance of the presented technique in creating complex spatiotemporal spiking patterns is demonstrated on neural populations described by mathematically ideal and biophysical models, including the Kuramoto and Hodgkin-Huxley models, as well as real-time experiments on Wein bridge oscillators. 
    more » « less