skip to main content


Title: Inferring Task-Space Central Pattern Generator Parameters for Closed-loop Control of Underactuated Robots
The complexity associated with the control of highly-articulated legged robots scales quickly as the number of joints increases. Traditional approaches to the control of these robots are often impractical for many real-time applications. This work thus presents a novel sampling-based planning ap- proach for highly-articulated robots that utilizes a probabilistic graphical model (PGM) to infer in real-time how to optimally modify goal-driven, locomotive behaviors for use in closed-loop control. Locomotive behaviors are quantified in terms of the parameters associated with a network of neural oscillators, or rather a central pattern generator (CPG). For the first time, we show that the PGM can be used to optimally modulate different behaviors in real-time (i.e., to select of optimal choice of parameter values across the CPG model) in response to changes both in the local environment and in the desired control signal. The PGM is trained offline using a library of optimal behaviors that are generated using a gradient-free optimization framework.  more » « less
Award ID(s):
1723972
NSF-PAR ID:
10195696
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 IEEE International Conference on Robotics and Automation (ICRA)
Page Range / eLocation ID:
8833 to 8839
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sampling-based motion planning algorithms provide a means to adapt the behaviors of autonomous robots to changing or unknown a priori environmental conditions. However, as the size of the space over which a sampling-based approach needs to search is increased (perhaps due to considering robots with many degree of freedom) the computational limits necessary for real-time operation are quickly exceeded. To address this issue, this paper presents a novel sampling-based approach to locomotion planning for highly-articulated robots wherein the parameters associated with a class of locomotive behaviors (e.g., inter-leg coordination, stride length, etc.) are inferred in real-time using a sample-efficient algorithm. More specifically, this work presents a data-based approach wherein offline-learned optimal behaviors, represented using central pattern generators (CPGs), are used to train a class of probabilistic graphical models (PGMs). The trained PGMs are then used to inform a sampling distribution of inferred walking gaits for legged hexapod robots. Simulated as well as hardware results are presented to demonstrate the successful application of the online inference algorithm. 
    more » « less
  2. Sampling-based motion planning algorithms provide a means to adapt the behaviors of autonomous robots to changing or unknown a priori environmental conditions. However, as the size of the space over which a sampling-based approach needs to search is increased (perhaps due to considering robots with many degree of freedom) the computational limits necessary for real-time operation are quickly exceeded. To address this issue, this paper presents a novel sampling-based approach to locomotion planning for highly-articulated robots wherein the parameters associated with a class of locomotive behaviors (e.g., inter-leg coordination, stride length, etc.) are inferred in real-time using a sample-efficient algorithm. More specifically, this work presents a data-based approach wherein offline-learned optimal behaviors, represented using central pattern generators (CPGs), are used to train a class of probabilistic graphical models (PGMs). The trained PGMs are then used to inform a sampling distribution of inferred walking gaits for legged hexapod robots. Simulated as well as hardware results are presented to demonstrate the successful application of the online inference algorithm. 
    more » « less
  3. : Inspired by the locomotor nervous system of vertebrates, central pattern generator (CPG) models can be used to design gaits for articulated robots, such as crawling, swimming or legged robots. Incorporating sensory feedback for gait adaptation in these models can improve the locomotive performance of such robots in challenging terrain. However, many CPG models to date have been developed exclusively for open-loop gait generation for traversing level terrain. In this paper, we present a novel approach for incorporating inertial feedback into the CPG framework for the control of body posture during legged locomotion on steep, unstructured terrain. That is, we adapt the limit cycle of each leg of the robot with time to simultaneously produce locomotion and body posture control. We experimentally validate our approach on a hexapod robot, locomoting in a variety of steep, challenging terrains (grass, rocky slide, stairs). We show how our approach can be used to level the robot's body, allowing it to locomote at a relatively constant speed, even as terrain steepness and complexity prevents the use of an open-loop control strategy. 
    more » « less
  4. Mobile soft robots offer compelling applications in fields ranging from urban search and rescue to planetary exploration. A critical challenge of soft robotic control is that the nonlinear dynamics imposed by soft materials often result in complex behaviors that are counter-intuitive and hard to model or predict. As a consequence, most behaviors for mobile soft robots are discovered through empirical trial and error and hand-tuning. A second challenge is that soft materials are difficult to simulate with high fidelity - leading to a significant reality gap when trying to discover or optimize new behaviors. In this work we employ a Quality Diversity Algorithm running model-free on a physical soft tensegrity robot that autonomously generates a behavioral repertoire with no a priori knowledge of the robot's dynamics, and minimal human intervention. The resulting behavior repertoire displays a diversity of unique locomotive gaits useful for a variety of tasks. These results help provide a road map for increasing the behavioral capabilities of mobile soft robots through real-world automation. 
    more » « less
  5. null (Ed.)
    In this paper, we present a new locomotion control method for soft robot snakes. Inspired by biological snakes, our control architecture is composed of two key modules: A reinforcement learning (RL) module for achieving adaptive goal-tracking behaviors with changing goals, and a central pattern generator (CPG) system with Matsuoka oscillators for generating stable and diverse locomotion patterns. The two modules are interconnected into a closed-loop system: The RL module, analogizing the locomotion region located in the midbrain of vertebrate animals, regulates the input to the CPG system given state feedback from the robot. The output of the CPG system is then translated into pressure inputs to the pneumatic actuators of the soft snake robot. Based on the fact that the oscillation frequency and wave amplitude of the Matsuoka oscillator can be independently controlled under different time scales, we further adapt the option-critic framework to improve the learning performance measured by optimality and data efficiency. The performance of the proposed controller is experimentally validated with both simulated and real soft snake robots. 
    more » « less