skip to main content

Title: CuInSe2 nanotube arrays for efficient solar energy conversion
Abstract

Highly uniform and vertically alignedp-type CuInSe2(CISe) nanotube arrays were fabricated through a unique protocol, incorporating confined electrodeposition on lithographically patterned nanoelectrodes. This protocol can be readily adapted to fabricate nanotube arrays of other photoabsorber and functional materials with precisely controllable design parameters. Ternary CISe nanotube arrays were electrodeposited congruently from a single electrolytic bath and the resulting nanotube arrays were studied through powder X-ray diffraction as well as elemental analysis which revealed compositional purity. Detailed photoelectrochemical (PEC) characterizations in a liquid junction cell were also carried out to investigate the photoconversion efficiency. It was observed that the tubular geometry had a strong influence on the photocurrent response and a 29.9% improvement of the photoconversion efficiency was observed with the nanotube array compared to a thin film geometry fabricated by the same process. More interestingly such enhancement in photoconversion efficiency was obtained when the electrode coverage with the nanotube arrays as photoactive material was only a fraction (~10%) of that for the thin film device. Apart from enhancement in photoconversion efficiency, this versatile technique provides ample opportunities to study novel photovoltaic materials and device design architectures where structural parameters play a key role such as resonant light trapping.

Authors:
;
Publication Date:
NSF-PAR ID:
10153964
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Although nanoscale deformation, such as nanostrain in iron-chalcogenide (FeSexTe1−x, FST) thin films, has attracted attention owing to its enhancement of general superconducting properties, including critical current density (Jc) and critical transition temperature, the development of this technique has proven to be an extremely challenging and complex process thus far. Herein, we successfully fabricated an epitaxial FST thin film with uniformly distributed nanostrain by injection of a trace amount of CeO2inside an FST matrix using sequential pulsed laser deposition. By means of transmission electron microscopy and geometric phase analysis, we verified that the injection of a trace amount of CeO2formsmore »nanoscale defects, with a nanostrained region of tensile strain (εzz ≅ 0.02) along thec-axis of the FST matrix. This nanostrained FST thin film achieves a remarkableJcof 3.5 MA/cm2under a self-field at 6 K and a highly enhancedJcunder the entire magnetic field with respect to those of a pristine FST thin film.

    « less
  2. Abstract

    The efficiency of thin-film solar cells with a Cu(In1xGax)Se2absorber is limited by nanoscopic inhomogeneities and defects. Traditional characterization methods are challenged by the multi-scale evaluation of the performance at defects that are buried in the device structures. Multi-modal x-ray microscopy offers a unique tool-set to probe the performance in fully assembled solar cells, and to correlate the performance with composition down to the micro- and nanoscale. We applied this approach to the mapping of temperature-dependent recombination for Cu(In1xGax)Se2solar cells with different absorber grain sizes, evaluating the same areas from room temperature to100more »width='0.25em'/>°C. It was found that poor performing areas in the large-grain sample are correlated with a Cu-deficient phase, whereas defects in the small-grain sample are not correlated with the distribution of Cu. In both samples, classes of recombination sites were identified, where defects were activated or annihilated by temperature. More generally, the methodology of combinedoperandoandin situx-ray microscopy was established at the physical limit of spatial resolution given by the device itself. As proof-of-principle, the measurement of nanoscopic current generation in a solar cell is demonstrated with applied bias voltage and bias light.

    « less
  3. Abstract

    A knowledge-based understanding of the plasma-surface-interaction with the aim to precisely control (reactive) sputtering processes for the deposition of thin films with tailored and reproducible properties is highly desired for industrial applications. In order to understand the effect of plasma parameter variations on the film properties, a single plasma parameter needs to be varied, while all other process and plasma parameters should remain constant. In this work, we use the Electrical Asymmetry Effect in a multi-frequency capacitively coupled plasma to control the ion energy at the substrate without affecting the ion-to-growth flux ratio by adjusting the relative phase betweenmore »two consecutive driving harmonics and their voltage amplitudes. Measurements of the ion energy distribution function and ion flux at the substrate by a retarding field energy analyzer combined with the determined deposition rateRdfor a reactive Ar/N2(8:1) plasma at 0.5 Pa show a possible variation of the mean ion energy at the substrateEmigwithin a range of 38 and 81 eV that allows the modification of the film characteristics at the grounded electrode, when changing the relative phase shiftθbetween the applied voltage frequencies, while the ion-to-growth flux ratio Γiggrcan be kept constant. AlN thin films are deposited and exhibit an increase in compressive film stress from −5.8 to −8.4 GPa as well as an increase in elastic modulus from 175 to 224 GPa as a function of the mean ion energy. Moreover, a transition from the preferential orientation (002) at low ion energies to the (100), (101) and (110) orientations at higher ion energies is observed. In this way, the effects of the ion energy on the growing film are identified, while other process relevant parameters remain unchanged.

    « less
  4. Abstract

    We report on factors influencing the specific energy costs of producing NOxfrom pin-to-pin DC glow discharges in air at atmospheric pressure. Discharge current, gap distance, gas flowrate, exterior tube wall temperature and the presence and position of activated Al2O3catalyst powder were examined. The presence of heated catalyst adjacent to the plasma zone improved energy efficiency by as much as 20% at low flows, but the most energy efficient conditions were found at the highest flowrates that allowed a stable discharge (about 10–15 l min−1). Under these conditions, the catalyst had no effect on efficiency in the present study. Themore »lowest specific energy cost was observed to be between about 200–250 GJ/tN. The transport of active chemical species and energy are likely key factors controlling the specific energy costs of NOxproduction in the presence of a catalyst. Air plasma device design and operating conditions must ensure that plasma-generated active intermediate chemical species transport is optimally coupled with catalytically active surfaces.

    « less
  5. Abstract

    Large-scale deployment of photovoltaic modules is required to power our renewable energy future. Kesterite, Cu2ZnSn(S, Se)4, is a p-type semiconductor absorber layer with a tunable bandgap consisting of earth abundant elements, and is seen as a potential ‘drop-in’ replacement to Cu(In,Ga)Se2in thin film solar cells. Currently, the record light-to-electrical power conversion efficiency (PCE) of kesterite-based devices is 12.6%, for which the absorber layer has been solution-processed. This efficiency must be increased if kesterite technology is to help power the future. Therefore two questions arise: what is the best way to synthesize the film? And how to improve the devicemore »efficiency? Here, we focus on the first question from a solution-based synthesis perspective. The main strategy is to mix all the elements together initially and coat them on a surface, followed by annealing in a reactive chalcogen atmosphere to react, grow grains and sinter the film. The main difference between the methods presented here is how easily the solvent, ligands, and anions are removed. Impurities impair the ability to achieve high performance (>∼10% PCE) in kesterite devices. Hydrazine routes offer the least impurities, but have environmental and safety concerns associated with hydrazine. Aprotic and protic based molecular inks are environmentally friendlier and less toxic, but they require the removal of organic and halogen species associated with the solvent and precursors, which is challenging but possible. Nanoparticle routes consisting of kesterite (or binary chalcogenides) particles require the removal of stabilizing ligands from their surfaces. Electrodeposited layers contain few impurities but are sometimes difficult to make compositionally uniform over large areas, and for metal deposited layers, they have to go through several solid-state reaction steps to form kesterite. Hence, each method has distinct advantages and disadvantages. We review the state-of-the art of each and provide perspective on the different strategies.

    « less