skip to main content


Title: Salt Mediated Self-Assembly of Poly(ethylene glycol)-Functionalized Gold Nanorods
Abstract

Although challenging, assembling and orienting non-spherical nanomaterials into two- and three-dimensional (2D and 3D) ordered arrays can facilitate versatile collective properties by virtue of their shape-dependent properties that cannot be realized with their spherical counterparts. Here, we report on the self-assembly of gold nanorods (AuNRs) into 2D films at the vapor/liquid interface facilitated by grafting them with poly(ethylene glycol) (PEG). Using surface sensitive synchrotron grazing incidence small angle X-ray scattering (GISAXS) and specular X-ray reflectivity (XRR), we show that PEG-AuNRs in aqueous suspensions migrate to the vapor/liquid interface in the presence of salt, forming a uniform monolayer with planar-to-surface orientation. Furthermore, the 2D assembled PEG functionalized AuNRs exhibit short range order into rectangular symmetry with side-by-side and tail-to-tail nearest-neighbor packing. The effect of PEG chain length and salt concentration on the 2D assembly are also reported.

 
more » « less
Award ID(s):
1834750
NSF-PAR ID:
10153985
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Biofouling at the solid–liquid–air interface poses a serious threat to public health and environmental sustainability. Despite the variety of antifouling materials developed, few have proven to resist fouling at the three‐phase contact line. In fact, antifouling at the liquid–solid interface and the air–solid interface call for opposite surface properties—hydrophilic for the former and hydrophobic for the latter. By devising a new design strategy, one that maximizes the mismatch of surface energies of comonomers for dynamic chain reorientation at the three‐phase contact line, an antifouling amphiphilic copolymer is obtained. The novel amphiphilic copolymer reduces the formation of biofilms byPseudomonas aeruginosaand outperforms a zwitterionic polymer, the current leading antifouling chemistry. The copolymer is synthesized using initiated chemical vapor deposition (iCVD), which leads to molecular‐level heterogeneities composed of zwitterionic and fluorinated moieties by avoiding undesirable surface tension effects. Atomic force microscopy, x‐ray diffractometry, and Fourier transform infrared spectroscopy confirm the copolymer's amphiphilicity and lack of microphase separation. Scanning electron microscopy provides visual confirmation of the diminished biofilm growth. The versatile iCVD technique is amenable to a range of substrates and enables the application of this new material to food processing, healthcare, and underwater performance.

     
    more » « less
  2. Metal-ion batteries (e.g., lithium and sodium ion batteries) are the promising power sources for portable electronics, electric vehicles, and smart grids. Recent metal-ion batteries with organic liquid electrolytes still suffer from safety issues regarding inflammability and insufficient lifetime.1 As the next generation energy storage devices, all-solid-state batteries (ASSBs) have promising potentials for the improved safety, higher energy density, and longer cycle life than conventional Li-ion batteries.2 The nonflammable solid electrolytes (SEs), where only Li ions are mobile, could prevent battery combustion and explosion since the side reactions that cause safety issues as well as degradation of the battery performance are largely suppressed. However, their practical application is hampered by the high resistance arising at the solid–solid electrode–electrolyte interface (including cathode-electrolyte interface and anode-electrolyte interface).3 Several methods have been introduced to optimize the contact capability as well as the electrochemical/chemical stability between the metal anodes (i.e.: Li and Na) and the SEs, which exhibited decent results in decreasing the charge transfer resistance and broadening the range of the stable energy window (i.e., lowing the chemical potential of metal anode below the highest occupied molecular orbital of the SEs).4 Nevertheless, mitigation for the cathode in ASSB is tardily developed because: (1) the porous structure of the cathode is hard to be infiltrated by SEs;5 (2) SEs would be oxidized and decomposed by the high valence state elements at the surface of the cathode at high state of charge.5 Herein, we demonstrate a universal cathode design strategy to achieve superior contact capability and high electrochemical/chemical stability with SEs. Stereolithography is adopted as a manufacturing technique to realize a hierarchical three-dimensional (HTD) electrode architecture with micro-size channels, which is expected to provide larger contact areas with SEs. Then, the manufactured cathode is sintered at 700 °C in a reducing atmosphere (e.g.: H2) to accomplish the carbonization of the resin, delivering sufficiently high electronic conductivity for the cathode. To avoid the direct exposure of the cathode active materials to the SEs, oxidative chemical vapor deposition technique (oCVD) is leveraged to build conformal and highly conducting poly(3,4-ethylenedioxythiophene) (PEDOT) on the surface of the HTD cathode.6 To demonstrate our design strategy, both NCM811 and Na3V2(PO4)3 is selected as active materials in the HTD cathode, then each cathode is paired with organic (polyacrylonitrile-based) and inorganic (sulfur-based) SEs assembled into two batteries (total four batteries). SEM and TEM reveal the micro-size HTD structure with built-in channels. Featured by the HTD architecture, the intrinsic kinetic and thermodynamic conditions will be enhanced by larger surface contact areas, more active sites, improved infusion and electrolyte ion accessibility, and larger volume expansion capability. Disclosed by X-ray computed tomography, the interface between cathode and SEs in the four modified samples demonstrates higher homogeneity at the interface between the cathode and SEs than that of all other pristine samples. Atomic force microscopy is employed to measure the potential image of the cross-sectional interface by the peak force tapping mode. The average potential of modified samples is lower than that of pristine samples, which confirms a weakened space charge layer by the enhanced contact capability. In addition, through Electron Energy Loss Spectroscopy coupled with Scanning Transmission Electron Microscopy, the preserved interface between HTD cathode and SE is identified; however, the decomposing of the pristine cathode is clearly observed. In addition, Finite element method simulations validate that the diffusion dynamics of lithium ions is favored by HTD structure. Such a demonstrated universal strategy provides a new guideline to engineer cathode electrolyte interface by reconstructing electrode structures that can be applicable to all solid-state batteries in a wide range of chemical conditions. 
    more » « less
  3. Abstract

    The structure and properties of segmented block copolymer films of aromatic polyimide (PI) and poly(ethylene glycol) (PEG) doped with an ionic liquid are studied for potential polymer electrolyte membrane applications for fuel cells. Poly(amic acid) precursors of PI‐PEG copolymers of 4,4′‐(hexafluoroisopropylidene) diphthalic anhydride, 4,4′‐(1,3‐phenylenedioxy) dianiline, and bis(3‐aminopropyl) terminated PEG (Mn≈ 1500) are synthesized and then thermally imidized in membrane films, followed by swelling in ethylammonium nitrate (EAN) ionic liquid. The small‐angle X‐ray scattering results from the EAN‐doped PI‐PEG copolymer films show disordered bicontinuous phase‐separated nanostructures described by Teubner–Strey theory, with the interface fractal dimension determined from the Porod equation. Thermal annealing of the EAN‐doped membranes at 100–140 °C results in increased correlation lengths and smoother interfaces of the bicontinuous nanostructures. Such improved nanostructures lead to the increased ionic conductivity by two to five times with the maximum conductivity of 210 mS cm−1at 60 °C and 70% RH, much greater (nearly fivefold) than that of Nafion films, while maintaining the mechanical stability possibly up to 140 °C. Moreover, the investigation of the disordered bicontinuous phase‐separated nanostructure of EAN‐doped PI‐PEG copolymer membranes is highly relevant to understanding the nanostructures of hydrated Nafion membranes and segmented block copolymers in general.

     
    more » « less
  4. Abstract

    Liquid interfaces facilitate the organization of nanometer‐scale biomaterials with plasmonic properties suitable for molecular diagnostics. Using hierarchical assemblage of 2D hafnium disulfide nanoplatelets and zero‐dimensional spherical gold nanoparticles, the design of a multifunctional material is reported. When the target analyte is present, the nanocomposites’ self‐assembling pattern changes, altering their plasmonic response. Using monkeypox virus (MPXV) as an example, the findings reveal that adding genomic DNA to the nanocomposite surface increases the agglomeration between gold nanoparticles and decreases the π‐stacking distance between hafnium disulfide nanoplatelets. Further, this self‐assembled nanomaterial is found to have minimal cross‐reactivity toward other pathogens and a limit of detection of 7.6 pg µL−1(i.e., 3.57 × 104copies µL−1) toward MPXV. Overall, this study helped to gain a better understanding of the genomic organization of MPXV to chemically design and develop targeted nucleotides. The study has been validated by UV–vis spectroscopy, X‐ray diffraction, scanning transmission electron microscopy, surface‐enhanced Raman microscopy and electromagnetic simulation studies. To the best knowledge, this is the first study in literature reporting selective molecular detection of MPXV within a few minutes and without the use of any high‐end instrumental techniques like polymerase chain reactions.

     
    more » « less
  5. Morkoç, Hadis ; Fujioka, Hiroshi ; Schwarz, Ulrich T. (Ed.)
    We report the gate leakage current and threshold voltage characteristics of Al0.3Ga0.7N/GaN heterojunction field effect transistor (HFET) with metal-organic chemical vapor deposition (MOCVD) grown β-Ga2O3 as a gate dielectric for the first time. In this study, GaN channel HFET and β-Ga2O3 passivated metal-oxide-semiconductor-HFET (MOS-HFET) structures were grown in MOCVD using N2 as carrier gas on a sapphire substrate. X-ray diffraction (XRD) and atomic force microscopy (AFM) were used to characterize the structural properties and surface morphology of the heterostructure. The electrical properties were analyzed using van der Pauw, Hall, and the mercury probe capacitance-voltage (C-V) measurement systems. The 2-dimensional electron gas (2DEG) carrier density for the heterostructure was found to be in the order of ~1013 cm-2. The threshold voltage shifted more towards the negative side for the MOSHFET. The high-low (Hi-Lo) frequency-based C-V method was used to calculate the interface charge density for the oxide-AlGaN interface and was found to be in the order of ~1012 cm2eV-1. A remarkable reduction in leakage current from 2.33×10-2 A/cm2 for HFET to 1.03×10-8 A/cm2 for MOSHFET was observed demonstrating the viability of MOCVD-grown Ga2O3 as a gate dielectric. 
    more » « less