High-performance lightweight architectures, such as metallic microlattices with excellent mechanical properties have been 3D printed, but they do not possess shape memory effect (SME), limiting their usages for advanced engineering structures, such as serving as a core in multifunctional lightweight sandwich structures. 3D printable self-healing shape memory polymer (SMP) microlattices could be a solution. However, existing 3D printable thermoset SMPs are limited to either low strength, poor stress memory, or non-recyclability. To address this issue, a new thermoset polymer, integrated with high strength, high recovery stress, perfect shape recovery, good recyclability, and 3D printability using direct light printing, has been developed in this study. Lightweight microlattices with various unit cells and length scales were printed and tested. The results show that the cubic microlattice has mechanical strength comparable to or even greater than that of metallic microlattices, good SME, decent recovery stress, and recyclability, making it the first multifunctional lightweight architecture (MLA) for potential multifunctional lightweight load carrying structural applications.
more » « less- Award ID(s):
- 1736136
- NSF-PAR ID:
- 10154007
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Engineering applications of current thermoset shape memory polymers are limited by three critical issues: demanding fabrication conditions (from 70 to 300 °C temperatures for hours or days), lack of reprocessability or recyclability, and low recovery stress and energy output. To address these problems simultaneously, a new UV curable and vitrimer-based epoxy thermoset shape memory polymer (VSMP) has been synthesized. A 1.1 mm thick VSMP film can be readily cured at room temperature under UV-irradiation (61 mW cm −2 ) in just 80 s. It possesses 36.7 MPa tensile strength, 230 MPa compressive strength, and 3120 MPa modulus at room temperature. It still has a compressive strength of 187 MPa at 120 °C. The covalent adaptable network (CAN) imparts the VSMP with recyclability, as reflected by two effective recycling cycles (>60% recycling efficiency). In addition, the VSMP exhibits good shape memory properties for multiple shape recovery cycles. With 20% compression programming strain, up to 13.4 MPa stable recovery stress and 1.05 MJ m −3 energy output in the rubbery state are achieved. With good mechanical strength, thermal stability, recyclability, and excellent shape memory properties combined with in situ UV-curing capabilities, the new VSMP is a promising multifunctional thermoset for engineering applications.more » « less
-
Abstract In this paper, an open-cell metallic foam was filled in by a tough shape memory polymer (SMP), to form a hybrid metal/polymer composite with multifunctionalities and enhanced mechanical properties. This work aims to study the positive composite actions between the metallic skeleton and the SMP filler. Mechanical, thermal, and conductive properties of the resulting hybrid composite were evaluated and compared to the individual components. Uniaxial compression tests and shape memory effect tests were conducted. Results demonstrated an improvement in the compressive strength and toughness. The hybrid composite also exhibited excellent shape recovery and high recovery stress of 1.76 MPa. Infrared thermography has been used to verify the free shape recovery by Joule heating. Sandwich structures with the hybrid composite as the core were studied through low velocity impact test and three-point bending test. The sandwich structures with the composite foam core showed significant performance improvement in both tests. Electrical resistivity study during the three-point bending test validates the possible application of this multifunctional polymer-aluminum open cell foam composite as strain sensor. This type of hybrid composites can be beneficial in many industrial sectors that search for an ideal combination of high strength, high toughness, low weight, damage sensing, and excellent energy absorption capabilities.more » « less
-
Abstract Damage healing in fiber reinforced thermoset polymer composites has been generally divided into intrinsic healing by the polymer itself and extrinsic healing by incorporation of external healing agent. In this study, we propose to use a hybrid extrinsic-intrinsic self-healing strategy to heal delamination in laminated composite induced by low velocity impact. Especially, we propose to use an intrinsic self-healing thermoset vitrimer as an external healing agent, to heal delamination in laminated thermoset polymer composites. To this purpose, we designed and synthesized a new vitrimer, machined it into powders, and strategically sprayed a layer of vitrimer powders at the interface between the laminas during manufacturing. Also, a thermoset shape memory polymer with fire-proof property was used as the matrix. As a result, incorporation of about 3% by volume of vitrimer powders made the laminate exhibit multifunctionalities such as repeated delamination healing, excellent shape memory effect, improved toughness and impact tolerance, and decent fire-proof properties. In particular, the novel vitrimer powder imparted the laminate with first cycle and second cycle delamination healing efficiencies of 98.06% and 85.93%, respectively. The laminate also exhibited high recovery stress of 65.6 MPa. This multifunctional composite laminate has a great potential in various engineering applications, for example, actuators, robotics, deployable structures, and smart fire-proof structures.
-
Abstract Thermally cured thermoset polymers such as epoxies are widely used in industry and manufacturing due to their thermal, chemical, and electrical resistance, and mechanical strength and toughness. However, it can be challenging to 3D print thermally cured thermosets without rheological modification because they tend to flow and not hold their shape when extruded due to cure times of minutes to hours. 3D printing inside a support bath addresses this by allowing the liquid polymer to be held in place until the thermoset is fully cured and expands the structures that can be printed as extrusion is not limited to layer‐by‐layer. Here, the use of Freeform Reversible Embedding (FRE) to 3D print off‐the‐shelf thermoset epoxy into lattice structures using nonplanar extrusion is reported. To do this, the authors investigate how extrusion direction in 3D space impacts epoxy filament morphology and fusion at filament intersections. Furthermore, the advantages of this approach are shown by using nonplanar printing to produce lattice geometries that show ≈ four times greater specific modulus compared with lattice structures printed using other materials and printing techniques.
-
Covalent adaptable networks (CANs) containing reversible cross-links impart recyclability to thermoset materials without sacrificing their desirable properties ( e.g. high tensile strength and solvent resistance). In addition to thermal recycling, the sustainability of these materials may be further improved by incorporating bio-sourced monomers or by enabling alternate end-of-life fates, such as biodegradation or recovery of starting materials. The alternating ring-opening copolymerisation of epoxides and cyclic anhydrides permits the modular synthesis of polyester pre-polymers that can then be cross-linked to form dynamic imine-linked networks. We report the synthesis and characterisation of five imine exchange polyester CANs with varied cross-linking densities and pre-polymer architectures. While the materials exhibit characteristic thermoset properties at service temperatures, differences in pre-polymer architecture produce distinct dynamic mechanical effects at elevated temperatures. The networks may be thermally reprocessed with full recovery of their tensile strengths and cross-linking densities, dissociated to pre-polymer, or hydrolytically degraded.more » « less