Worldwide applications of ochre analysis continue to develop at a rapid pace, highlighting a number of analytical and interpretative issues. As regional source databases continue to grow, researchers have turned to the thornier issues of source allocation. In this study, we utilize LA–ICP–MS and NAA to examine archaeological pigments, ceramic paints and experimental tiles from geological sources and Hohokam ceramics in central Arizona. Archaeological pigments and paint on sherds are successfully source matched based on trace element content, with implications for understanding paint production, sociocultural relations governing trade in pigment and the use of different resource landscapes over time.
Red mineral pigment use is recognized as a fundamental component of a series of traits associated with human evolutionary development, social interaction, and behavioral complexity. Iron-enriched mineral deposits have been collected and prepared as pigment for use in rock art, personal adornment, and mortuary practices for millennia, yet little is known about early developments in mineral processing techniques in North America. Microanalysis of rock art pigments from the North American Pacific Northwest reveals a sophisticated use of iron oxide produced by the biomineralizing bacterium
Figshare link to figures:
- Award ID(s):
- 1651538
- PAR ID:
- 10154035
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract To quantitatively convert upper mantle seismic wave speeds measured into temperature, density, composition, and corresponding and uncertainty, we introduce the
W hole‐rockI nterpretativeS eismicT oolboxF orU ltramaficL ithologies (WISTFUL). WISTFUL is underpinned by a database of 4,485 ultramafic whole‐rock compositions, their calculated mineral modes, elastic moduli, and seismic wave speeds over a range of pressure (P ) and temperature (T ) (P = 0.5–6 GPa,T = 200–1,600°C) using the Gibbs free energy minimization routine Perple_X. These data are interpreted with a toolbox of MATLAB® functions, scripts, and three general user interfaces:WISTFUL_relations , which plots relationships between calculated parameters and/or composition;WISTFUL_geotherms , which calculates seismic wave speeds along geotherms; andWISTFUL_inversion , which inverts seismic wave speeds for best‐fit temperature, composition, and density. To evaluate our methodology and quantify the forward calculation error, we estimate two dominant sources of uncertainty: (a) the predicted mineral modes and compositions, and (b) the elastic properties and mixing equations. To constrain the first source of uncertainty, we compiled 122 well‐studied ultramafic xenoliths with known whole‐rock compositions, mineral modes, and estimatedP ‐T conditions. We compared the observed mineral modes with modes predicted using five different thermodynamic solid solution models. The Holland et al. (2018,https://doi.org/10.1093/petrology/egy048 ) solution models best reproduce phase assemblages (∼12 vol. % phase root‐mean‐square error [RMSE]) and estimated wave speeds. To assess the second source of uncertainty, we compared wave speed measurements of 40 ultramafic rocks with calculated wave speeds, finding excellent agreement (V pRMSE = 0.11 km/s). WISTFUL easily analyzes seismic datasets, integrates into modeling, and acts as an educational tool. -
Abstract We address in situ serpentinization and mineral carbonation processes in oceanic lithosphere using integrated field magnetic measurements, rock magnetic analyses, superconducting quantum interference device (SQUID) microscopy, microtextural observations, and energy dispersive spectroscopy phase mapping. A representative suite of ultramafic rock samples were collected, within the Atlin ophiolite, along a 100‐m long transect across a continuous outcrop of mantle harzburgite with several alteration fronts: serpentinite, soapstone (magnesite + talc), and listvenite (magnesite + quartz). Strong correlations between changes in magnetic signal strengths and amount of alteration are shown with distinctive contrasts between serpentinite, transitional soapstone, and listvenite that are linked to the formation and breakdown of magnetite. While previous observations of the Linnajavri ultramafic complex indicated that the breakdown of magnetite occurred during listvenite formation from the precursor soapstone (Tominaga et al., 2017,
https://doi.org/10.1038/s41467-017-01610-4 ), results from our study suggest that magnetite destabilization already occurred during the replacement of serpentinite by soapstone (i.e., at lower fluid CO2concentrations). This difference is attributed to fracture‐controlled flow of sulfur‐bearing alteration fluid at Atlin, causing reductive magnetite dissolution in thin soapstone zones separating serpentinite from sulfide‐mineralized listvenite. We argue that magnetite growth or breakdown in soapstone provides insight into the mode of fluid flow and the composition, which control the scale and extent of carbonation. This conclusion enables us to use magnetometry as a viable tool for monitoring the reaction progress from serpentinite to carbonate‐bearing assemblages in space and time with a caution that the three‐dimensionality of magnetic sources impacts the scalability of measurements. -
Abstract Journal editors have a large amount of power to advance open science in their respective fields by incentivising and mandating open policies and practices at their journals. The Data PASS Journal Editors Discussion Interface (JEDI, an online community for social science journal editors:
www.dpjedi.org ) has collated several resources on embedding open science in journal editing (www.dpjedi.org/resources ). However, it can be overwhelming as an editor new to open science practices to know where to start. For this reason, we created a guide for journal editors on how to get started with open science. The guide outlines steps that editors can take to implement open policies and practices within their journal, and goes through the what, why, how, and worries of each policy and practice. This manuscript introduces and summarizes the guide (full guide:https://doi.org/10.31219/osf.io/hstcx ). -
Abstract Carbonic anhydrase (CA) has been shown to promote calcite dissolution (Liu, 2001,
https://doi.org/10.1111/j.1755-6724.2001.tb00531.x ; Subhas et al., 2017,https://doi.org/10.1073/pnas.1703604114 ), and understanding the catalytic mechanism will facilitate our understanding of the oceanic alkalinity cycle. We use atomic force microscopy (AFM) to directly observe calcite dissolution in CA‐bearing solution. CA is found to etch the calcite surface only when in extreme proximity (~1 nm) to the mineral. Subsequently, the CA‐induced etch pits create step edges that serve as active dissolution sites. The possible catalytic mechanism is through the adsorption of CA on the calcite surface, followed by proton transfer from the CA catalytic center to the calcite surface during CO2hydration. This study shows that the accessibility of CA to particulate inorganic carbon (PIC) in the ocean is critical in properly estimating oceanic CaCO3and alkalinity cycles.