Abstract In their article entitled “Trapdoor Fault Activation:A Step Toward Caldera Collapse at Sierra Negra,Galapagos,Ecuador” Shreve and Delgado (2023,https://doi.org/10.1029/2023jb026437) examine co‐eruptive deformation during the 2018 eruption of Sierra Negra Volcano. One of their major conclusions is that the 2018 eruption, and specifically co‐eruptive faulting, represents the initial stages of caldera collapse. They reach this conclusion because they focus their analysis solely on co‐eruptive deformation, and do not investigate the total (net) deformation for the 2005 to 2018 eruption cycle. Bell, La Famina, et al. (2021,https://doi.org/10.1038/s41467‐021‐21596‐4) investigated both the pre‐ and co‐eruptive phases of the 2018 eruption and showed that net deformation was one of caldera resurgence, not subsidence. In this comment, we demonstrate that the conclusion of collapse, or even initiation of collapse, is attributable to not accounting for pre‐eruptive deformation on the intra‐caldera Trapdoor Fault system and incorrectly assuming that the volcano‐tectonic dynamics of Sierra Negra mimic those of other basaltic calderas.
more »
« less
High‐Resolution Magnetic‐Geochemical Mapping of the Serpentinized and Carbonated Atlin Ophiolite, British Columbia: Toward Establishing Magnetometry as a Monitoring Tool for In Situ Mineral Carbonation
Abstract We address in situ serpentinization and mineral carbonation processes in oceanic lithosphere using integrated field magnetic measurements, rock magnetic analyses, superconducting quantum interference device (SQUID) microscopy, microtextural observations, and energy dispersive spectroscopy phase mapping. A representative suite of ultramafic rock samples were collected, within the Atlin ophiolite, along a 100‐m long transect across a continuous outcrop of mantle harzburgite with several alteration fronts: serpentinite, soapstone (magnesite + talc), and listvenite (magnesite + quartz). Strong correlations between changes in magnetic signal strengths and amount of alteration are shown with distinctive contrasts between serpentinite, transitional soapstone, and listvenite that are linked to the formation and breakdown of magnetite. While previous observations of the Linnajavri ultramafic complex indicated that the breakdown of magnetite occurred during listvenite formation from the precursor soapstone (Tominaga et al., 2017,https://doi.org/10.1038/s41467-017-01610-4), results from our study suggest that magnetite destabilization already occurred during the replacement of serpentinite by soapstone (i.e., at lower fluid CO2concentrations). This difference is attributed to fracture‐controlled flow of sulfur‐bearing alteration fluid at Atlin, causing reductive magnetite dissolution in thin soapstone zones separating serpentinite from sulfide‐mineralized listvenite. We argue that magnetite growth or breakdown in soapstone provides insight into the mode of fluid flow and the composition, which control the scale and extent of carbonation. This conclusion enables us to use magnetometry as a viable tool for monitoring the reaction progress from serpentinite to carbonate‐bearing assemblages in space and time with a caution that the three‐dimensionality of magnetic sources impacts the scalability of measurements.
more »
« less
- Award ID(s):
- 2153786
- PAR ID:
- 10406151
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 24
- Issue:
- 4
- ISSN:
- 1525-2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract By means of a unifying measure-theoretic approach, we establish lower bounds on the Hausdorff dimension of the space-time set which can support anomalous dissipation for weak solutions of fluid equations, both in the presence or absence of a physical boundary. Boundary dissipation, which can occur at both the time and the spatial boundary, is analyzed by suitably modifying the Duchon & Robert interior distributional approach. One implication of our results is that any bounded Euler solution (compressible or incompressible) arising as a zero viscosity limit of Navier–Stokes solutions cannot have anomalous dissipation supported on a set of dimension smaller than that of the space. This result is sharp, as demonstrated by entropy-producing shock solutions of compressible Euler (Drivas and Eyink in Commun Math Phys 359(2):733–763, 2018.https://doi.org/10.1007/s00220-017-3078-4; Majda in Am Math Soc 43(281):93, 1983.https://doi.org/10.1090/memo/0281) and by recent constructions of dissipative incompressible Euler solutions (Brue and De Lellis in Commun Math Phys 400(3):1507–1533, 2023.https://doi.org/10.1007/s00220-022-04626-0 624; Brue et al. in Commun Pure App Anal, 2023), as well as passive scalars (Colombo et al. in Ann PDE 9(2):21–48, 2023.https://doi.org/10.1007/s40818-023-00162-9; Drivas et al. in Arch Ration Mech Anal 243(3):1151–1180, 2022.https://doi.org/10.1007/s00205-021-01736-2). For$$L^q_tL^r_x$$ suitable Leray–Hopf solutions of the$$d-$$ dimensional Navier–Stokes equation we prove a bound of the dissipation in terms of the Parabolic Hausdorff measure$$\mathcal {P}^{s}$$ , which gives$$s=d-2$$ as soon as the solution lies in the Prodi–Serrin class. In the three-dimensional case, this matches with the Caffarelli–Kohn–Nirenberg partial regularity.more » « less
-
Abstract Multi‐resolution analysis methods can reveal the underlying physical dynamics of nonstationary signals, such as those from lightning. In this paper we demonstrate the application of two multi‐resolution analysis methods: Ensemble Empirical Mode Decomposition (EEMD) and Variational Mode Decomposition (VMD) in a comparative way in the analysis of electric field change waveforms from lightning. EEMD and VMD decompose signals into a set of Intrinsic Mode Functions (IMFs). The IMFs can be combined using distance and divergence metrics to obtain noise reduction or to obtain new waveforms that isolate the physical processes of interest while removing irrelevant components of the original signal. We apply the EEMD and VMD methods to the observations of three close Narrow Bipolar Events (NBEs) that were reported by Rison et al. (2016,https://doi.org/10.1038/ncomms10721). The ΔE observations reveal the occurrence of complex oscillatory processes after the main NBE sferic. We show that both EEMD and VMD are able to isolate the oscillations from the main NBE, with VMD being more effective of the two methods since it requires the least user supervision. The oscillations are found to begin at the end of the NBEs' downward fast positive breakdown, and appear to be produced by a half‐wavelength standing wave within a weakly‐conducting resonant ionization cavity left behind in the wake of the streamer‐based NBE event. Additional analysis shows that one of the NBEs was likely initiated by an energetic cosmic ray shower, and also corrects a misinterpretation in the literature that fast breakdown is an artifact of NBE‐like events in interferometer observations.more » « less
-
Kelemen, Peter (Ed.)Most of the geologic CO2entering Earth’s atmosphere and oceans is emitted along plate margins. While C-cycling at mid-ocean ridges and subduction zones has been studied for decades, little attention has been paid to degassing of magmatic CO2and mineral carbonation of mantle rocks in oceanic transform faults. We studied the formation of soapstone (magnesite–talc rock) and other magnesite-bearing assemblages during mineral carbonation of mantle peridotite in the St. Paul’s transform fault, equatorial Atlantic. Clumped carbonate thermometry of soapstone yields a formation (or equilibration) temperature of 147 ± 13 °C which, based on thermodynamic constraints, suggests that CO2(aq)concentrations of the hydrothermal fluid were at least an order of magnitude higher than in seawater. The association of magnesite with apatite in veins, magnesite with a δ13C of −3.40 ± 0.04‰, and the enrichment of CO2in hydrothermal fluids point to magmatic degassing and melt-impregnation as the main source of CO2. Melt-rock interaction related to gas-rich alkali olivine basalt volcanism near the St. Paul’s Rocks archipelago is manifested in systematic changes in peridotite compositions, notably a strong enrichment in incompatible elements with decreasing MgO/SiO2. These findings reveal a previously undocumented aspect of the geologic carbon cycle in one of the largest oceanic transform faults: Fueled by magmatism in or below the root zone of the transform fault and subsequent degassing, the fault constitutes a conduit for CO2-rich hydrothermal fluids, while carbonation of peridotite represents a vast sink for the emitted CO2.more » « less
An official website of the United States government
