skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Circular photogalvanic spectroscopy of Rashba splitting in 2D hybrid organic–inorganic perovskite multiple quantum wells
Abstract

The two-dimensional (2D) Ruddlesden−Popper organic-inorganic halide perovskites such as (2D)-phenethylammonium lead iodide (2D-PEPI) have layered structure that resembles multiple quantum wells (MQW). The heavy atoms in 2D-PEPI contribute a large spin-orbit coupling that influences the electronic band structure. Upon breaking the inversion symmetry, a spin splitting (‘Rashba splitting’) occurs in the electronic bands. We have studied the spin splitting in 2D-PEPI single crystals using the circular photogalvanic effect (CPGE). We confirm the existence of Rashba splitting at the electronic band extrema of 35±10 meV, and identify the main inversion symmetry breaking direction perpendicular to the MQW planes. The CPGE action spectrum above the bandgap reveals spin-polarized photocurrent generated by ultrafast relaxation of excited photocarriers separated in momentum space. Whereas the helicity dependent photocurrent with below-gap excitation is due to spin-galvanic effect of the ionized spin-polarized excitons, where spin polarization occurs in the spin-split bands due to asymmetric spin-flip.

 
more » « less
Award ID(s):
1810096
PAR ID:
10154271
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We study the influence of mechanical deformations on the Zeeman and Rashba effects in transition metal dichalcogenide nanotubes and their Janus variants from first principles. In particular, we perform symmetry-adapted density functional theory simulations with spin–orbit coupling to determine the variation in the electronic band structure splittings with axial and torsional deformations. We find significant effects in molybdenum and tungsten nanotubes, for which the Zeeman splitting decreases with increase in strain, going to zero for large enough tensile/shear strains, while the Rashba splitting coefficient increases linearly with shear strain, while being zero for all tensile strains, a consequence of the inversion symmetry remaining unbroken. In addition, the Zeeman splitting is relatively unaffected by nanotube diameter, whereas the Rashba coefficient decreases with increase in diameter. Overall, mechanical deformations represent a powerful tool for spintronics in nanotubes.

     
    more » « less
  2. Inversion symmetry breaking could lead to the creation of a Rashba–Dresselhauls magnetic field, which plays the key role in spintronic devices. In this work, we propose and develop a composition gradient engineering approach that breaks inversion symmetry into inorganic halide perovskites with strong spin–orbit coupling. We synthesize epitaxial CsPbBr x Cl (3− x ) with Br/Cl composition gradient by a two-step chemical vapor deposition approach. Through optoelectronic measurements, we show the presence of circular photogalvanic effects (CPGEs), evidencing a Rashba-like spin polarized band structure. By spatially resolved photoluminescence spectra, we find that the observed CPGE is likely a cumulative result of inversion symmetry-broken interfaces featured by abrupt and stepwise composition gradient between the pristine and separated daughter phases. Our work suggests an avenue in engineering the spintronic property of halide perovskites for information processing. 
    more » « less
  3. Abstract

    Translation of chirality and asymmetry across structural motifs and length scales plays a fundamental role in nature, enabling unique functionalities in contexts ranging from biological systems to synthetic materials. Here, we introduce a structural chirality transfer across the organic–inorganic interface in two-dimensional hybrid perovskites using appropriate chiral organic cations. The preferred molecular configuration of the chiral spacer cations,R-(+)- orS-(−)-1-(1-naphthyl)ethylammonium and their asymmetric hydrogen-bonding interactions with lead bromide-based layers cause symmetry-breaking helical distortions in the inorganic layers, otherwise absent when employing a racemic mixture of organic spacers. First-principles modeling predicts a substantial bulk Rashba-Dresselhaus spin-splitting in the inorganic-derived conduction band with opposite spin textures betweenR- andS-hybrids due to the broken inversion symmetry and strong spin-orbit coupling. The ability to break symmetry using chirality transfer from one structural unit to another provides a synthetic design paradigm for emergent properties, including Rashba-Dresselhaus spin-polarization for hybrid perovskite spintronics and related applications.

     
    more » « less
  4. Abstract The presence of in-plane chiral effects, hence spin–orbit coupling, is evident in the changes in the photocurrent produced in a TiS 3 (001) field-effect phototransistor with left versus right circularly polarized light. The direction of the photocurrent is protected by the presence of strong spin–orbit coupling and the anisotropy of the band structure as indicated in NanoARPES measurements. Dark electronic transport measurements indicate that TiS 3 is n-type and has an electron mobility in the range of 1–6 cm 2 V −1 s −1 . I – V measurements under laser illumination indicate the photocurrent exhibits a bias directionality dependence, reminiscent of bipolar spin diode behavior. Because the TiS 3 contains no heavy elements, the presence of spin–orbit coupling must be attributed to the observed loss of inversion symmetry at the TiS 3 (001) surface. 
    more » « less
  5. Abstract

    Two-dimensional (2D) hybrid metal halide perovskites have emerged as outstanding optoelectronic materials and are potential hosts of Rashba/Dresselhaus spin-splitting for spin-selective transport and spin-orbitronics. However, a quantitative microscopic understanding of what controls the spin-splitting magnitude is generally lacking. Through crystallographic and first-principles studies on a broad array of chiral and achiral 2D perovskites, we demonstrate that a specific bond angle disparity connected with asymmetric tilting distortions of the metal halide octahedra breaks local inversion symmetry and strongly correlates with computed spin-splitting. This distortion metric can serve as a crystallographic descriptor for rapid discovery of potential candidate materials with strong spin-splitting. Our work establishes that, rather than the global space group, local inorganic layer distortions induced via appropriate organic cations provide a key design objective to achieve strong spin-splitting in perovskites. New chiral perovskites reported here couple a sizeable spin-splitting with chiral degrees of freedom and offer a unique paradigm of potential interest for spintronics.

     
    more » « less