skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A hybrid stochastic model of the budding yeast cell cycle
Abstract The growth and division of eukaryotic cells are regulated by complex, multi-scale networks. In this process, the mechanism of controlling cell-cycle progression has to be robust against inherent noise in the system. In this paper, a hybrid stochastic model is developed to study the effects of noise on the control mechanism of the budding yeast cell cycle. The modeling approach leverages, in a single multi-scale model, the advantages of two regimes: (1) the computational efficiency of a deterministic approach, and (2) the accuracy of stochastic simulations. Our results show that this hybrid stochastic model achieves high computational efficiency while generating simulation results that match very well with published experimental measurements.  more » « less
Award ID(s):
1909122
PAR ID:
10154283
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Systems Biology and Applications
Volume:
6
Issue:
1
ISSN:
2056-7189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Solidification phenomenon has been an integral part of the manufacturing processes of metals, where the quantification of stochastic variations and manufacturing uncertainties is critically important. Accurate molecular dynamics (MD) simulations of metal solidification and the resulting properties require excessive computational expenses for probabilistic stochastic analyses where thousands of random realizations are necessary. The adoption of inadequate model sizes and time scales in MD simulations leads to inaccuracies in each random realization, causing a large cumulative statistical error in the probabilistic results obtained through Monte Carlo (MC) simulations. In this work, we present a machine learning (ML) approach, as a data-driven surrogate to MD simulations, which only needs a few MD simulations. This efficient yet high-fidelity ML approach enables MC simulations for full-scale probabilistic characterization of solidified metal properties considering stochasticity in influencing factors like temperature and strain rate. Unlike conventional ML models, the proposed hybrid polynomial correlated function expansion here, being a Bayesian ML approach, is data efficient. Further, it can account for the effect of uncertainty in training data by exploiting mean and standard deviation of the MD simulations, which in principle addresses the issue of repeatability in stochastic simulations with low variance. Stochastic numerical results for solidified aluminum are presented here based on complete probabilistic uncertainty quantification of mechanical properties like Young’s modulus, yield strength and ultimate strength, illustrating that the proposed error-inclusive data-driven framework can reasonably predict the properties with a significant level of computational efficiency. 
    more » « less
  2. Abstract Nature finds ways to realize multi-functional surfaces by modulating nano-scale patterns on their surfaces, enjoying transparent, bactericidal, and/or anti-fogging features. Therein height distributions of nanopatterns play a key role. Recent advancements in nanotechnologies can reach that ability via chemical, mechanical, or optical fabrications. However, they require laborious complex procedures, prohibiting fast mass manufacturing. This paper presents a computational framework to help design multi-functional nano patterns by light. The framework behaves as a surrogate model for the inverse design of nano distributions. The framework’s hybrid (i.e., human and artificial) intelligence-based approach helps learn plausible rules of multi-physics processes behind the UV-controlled nano patterning and enriches training data sets. Then the framework’s inverse machine learning (ML) model can describe the required UV doses for the target heights of liquid in nano templates. Thereby, the framework can realize multiple functionalities including the desired nano-scale color, frictions, and bactericidal properties. Feasibility test results demonstrate the promising capability of the framework to realize the desired height distributions that can potentially enable multi-functional nano-scale surface properties. This computational framework will serve as a multi-physics surrogate model to help accelerate fast fabrications of nanopatterns with light and ML. 
    more » « less
  3. Abstract This work proposes a general framework for analyzing noise-driven transitions in spatially extended non-equilibrium systems and explaining the emergence of coherent patterns beyond the instability onset. The framework relies on stochastic parameterization formulas to reduce the complexity of the original equations while preserving the essential dynamical effects of unresolved scales. The approach is flexible and operates for both Gaussian noise and non-Gaussian noise with jumps. Our stochastic parameterization formulas offer two key advantages. First, they can approximate stochastic invariant manifolds when these manifolds exist. Second, even when such manifolds break down, our formulas can be adapted through a simple optimization of its constitutive parameters. This allows us to handle scenarios with weak time-scale separation where the system has undergone multiple transitions, resulting in large-amplitude solutions not captured by invariant manifolds or other time-scale separation methods. The optimized stochastic parameterizations capture then how small-scale noise impacts larger scales through the system’s nonlinear interactions. This effect is achieved by the very fabric of our parameterizations incorporating non-Markovian (memory-dependent) coefficients into the reduced equation. These coefficients account for the noise’s past influence, not just its current value, using a finite memory length that is selected for optimal performance. The specific memory function, which determines how this past influence is weighted, depends on both the strength of the noise and how it interacts with the system’s nonlinearities. Remarkably, training our theory-guided reduced models on a single noise path effectively learns the optimal memory length for out-of-sample predictions. This approach retains indeed good accuracy in predicting noise-induced transitions, including rare events, when tested against a large ensemble of different noise paths. This success stems from our hybrid approach, which combines analytical understanding with data-driven learning. This combination avoids a key limitation of purely data-driven methods: their struggle to generalize to unseen scenarios, also known as the ‘extrapolation problem.’ 
    more » « less
  4. Abstract We analytically study the emergence of instabilities and the consequent steady-state pattern formation in a stochastic partial differential equation (PDE) based, compartmental model of spatiotemporal epidemic spread. The model is characterized by: (1) strongly nonlinear forces representing the infection transmission mechanism and (2) random environmental forces represented by the Ornstein–Uhlenbeck (O–U) stochastic process which better approximates real-world uncertainties. Employing second-order perturbation analysis and computing the local Lyapunov exponent, we find the emergence of diffusion-induced instabilities and analyze the effects of O–U noise on these instabilities. We obtain a range of values of the diffusion coefficient and correlation time in parameter space that support the onset of instabilities. Notably, the stability and pattern formation results depend critically on the correlation time of the O–U stochastic process; specifically, we obtain lower values of steady-state infection density for higher correlation times. Also, for lower correlation times the results approach those obtained in the white noise case. The analytical results are valid for lower-order correlation times. In summary, the results provide insights into the onset of noise-induced, and Turing-type instabilities in a stochastic PDE epidemic model in the presence of strongly nonlinear deterministic infection forces and stochastic environmental forces represented by Ornstein–Uhlenbeck noise. 
    more » « less
  5. Abstract In recent years, the integration of single‐cell multi‐omics data has provided a more comprehensive understanding of cell functions and internal regulatory mechanisms from a non‐single omics perspective, but it still suffers many challenges, such as omics‐variance, sparsity, cell heterogeneity, and confounding factors. As it is known, the cell cycle is regarded as a confounder when analyzing other factors in single‐cell RNA‐seq data, but it is not clear how it will work on the integrated single‐cell multi‐omics data. Here, a cell cycle‐aware network (CCAN) is developed to remove cell cycle effects from the integrated single‐cell multi‐omics data while keeping the cell type‐specific variations. This is the first computational model to study the cell‐cycle effects in the integration of single‐cell multi‐omics data. Validations on several benchmark datasets show the outstanding performance of CCAN in a variety of downstream analyses and applications, including removing cell cycle effects and batch effects of scRNA‐seq datasets from different protocols, integrating paired and unpaired scRNA‐seq and scATAC‐seq data, accurately transferring cell type labels from scRNA‐seq to scATAC‐seq data, and characterizing the differentiation process from hematopoietic stem cells to different lineages in the integration of differentiation data. 
    more » « less