skip to main content


Title: Chemical synthesis of perfectly isotactic and high melting bacterial poly(3-hydroxybutyrate) from bio-sourced racemic cyclic diolide
Abstract

Bacterial poly(3-hydroxybutyrate) (P3HB) is a perfectly isotactic, crystalline material possessing properties suitable for substituting petroleum plastics, but high costs and low volumes of its production are impractical for commodity applications. The chemical synthesis of P3HB via ring-opening polymerization (ROP) of racemicβ-butyrolactone has attracted intensive efforts since the 1960s, but not yet produced P3HB with high isotacticity and molecular weight. Here, we report a route utilizing racemic cyclic diolide (rac-DL) derived from bio-sourced succinate. With stereoselective racemic catalysts, the ROP ofrac-DL under ambient conditions produces rapidly P3HB with perfect isotacticity ([mm] > 99%), high melting temperature (Tm = 171 °C), and high molecular weight (Mn = 1.54 × 105 g mol−1,Đ = 1.01). With enantiomeric catalysts, kinetic resolution polymerizations ofrac-DL automatically stops at 50% conversion and yields enantiopure (R,R)-DL and (S,S)-DL with >99%e.e. and the corresponding poly[(S)-3HB] and poly[(R)-3HB] with highTm = 175 °C.

 
more » « less
Award ID(s):
1664915
NSF-PAR ID:
10154287
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
9
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ring‐opening polymerization (ROP) of lactones or cyclic (di)esters is a powerful method to produce well‐defined, high‐molecular‐weight (bio)degradable aliphatic polyesters. While the ROP of lactones of various ring sizes has been extensively studied, the ROP of the simplest eight‐membered lactone, 7‐heptanolactone (7‐HL), has not been reported using metal‐based catalysts. Accordingly, this contribution reports the ROP of 7‐HL via metal‐catalyzed coordinative‐insertion polymerization to the corresponding high‐molecular‐weight polyester, poly(7‐hydroxyheptanoate) (P7HHp). The resulting P7HHp is a semi‐crystalline material, with aTmof 68 °C, which is ~10 °C higher than poly(ε‐caprolactone) derived from the seven‐membered lactone. Mechanical testing showed that P7HHp is a hard and tough plastic, with elongation at break >670%. P7HHp‐based polyesters with higherTmvalues have been achieved through stereoselective copolymerization of 7‐HL with an eight‐membered cyclic diester, racemic dimethyl diolide (rac‐8DLMe), known to lead to highTmpoly(3‐hydroxyburtyrate) (P3HB). Notably, catalyst's strong kinetic preference for polymerizingrac‐8DLMeover 7‐HL in the 1/1 comonomer mixture rendered the formation of di‐block copolymer P3HB‐b‐P7HHp, showing two crystalline domains withTm1 ~ 65 °C andTm2 ~ 160 °C. Semi‐crystalline random copolymers withTmup to 164 °C have also been obtained by adjusting copolymerization conditions. Mechanical testing showed that P3HB‐b‐P7HHp can synergistically combine the high modulus of isotactic P3HB with the high ductility of P7HHp.

     
    more » « less
  2. Abstract

    Bacterial polyhydroxyalkanoates (PHAs) are a unique class of biodegradable polymers because of their biodegradability in ambient environments and structural diversity enabled by side‐chain groups. However, the biosynthesis of PHAs is slow and expensive, limiting their broader applications as commodity plastics. To overcome such limitation, the catalyzed chemical synthesis of bacterial PHAs has been developed, using the metal‐catalyzed stereoselective ring‐opening (co)polymerization of racemic cyclic diolides (rac‐8DLR, R=alkyl group). In this combined experimental and computational study, polymerization kinetics, stereocontrol, copolymerization characteristics, and the properties of the resulting PHAs have been examined. Most notably, stereoselective copolymerizations ofrac‐8DLMewithrac‐8DLR(R=Et, Bu) have yielded high‐molecular‐weight, crystalline isotactic PHA copolymers that are hard, ductile, and tough plastics, and exhibit polyolefin‐like thermal and mechanical properties.

     
    more » « less
  3. Abstract

    Bacterial polyhydroxyalkanoates (PHAs) are a unique class of biodegradable polymers because of their biodegradability in ambient environments and structural diversity enabled by side‐chain groups. However, the biosynthesis of PHAs is slow and expensive, limiting their broader applications as commodity plastics. To overcome such limitation, the catalyzed chemical synthesis of bacterial PHAs has been developed, using the metal‐catalyzed stereoselective ring‐opening (co)polymerization of racemic cyclic diolides (rac‐8DLR, R=alkyl group). In this combined experimental and computational study, polymerization kinetics, stereocontrol, copolymerization characteristics, and the properties of the resulting PHAs have been examined. Most notably, stereoselective copolymerizations ofrac‐8DLMewithrac‐8DLR(R=Et, Bu) have yielded high‐molecular‐weight, crystalline isotactic PHA copolymers that are hard, ductile, and tough plastics, and exhibit polyolefin‐like thermal and mechanical properties.

     
    more » « less
  4. Abstract

    Construction of robust, stereocomplexed (sc) crystalline material, based on a recently discovered infinitely recyclable polymer system, requires blending of enantiomeric polymer chains produced from respective enantiopure, fused six‐five bicyclic lactones. Herein, the stereoselective polymerization of the racemic monomer by yttrium catalysts bearing tetradentate ligands is reported, where the tethered donor sidearm switches the heteroselectivity of the catalyst to isoselectivity when it is changed from the β‐OMe to β‐NMe2sidearm. The latter catalyst produces an isotactic stereoblock polymer (Pmup to 0.95) that forms the crystalline sc‐material with aTmof up to 171 °C. This sc‐material can be fully depolymerized back to rac‐monomer in a quantitative yield and purity, thus establishing its circular life cycle.

     
    more » « less
  5. Abstract

    Construction of robust, stereocomplexed (sc) crystalline material, based on a recently discovered infinitely recyclable polymer system, requires blending of enantiomeric polymer chains produced from respective enantiopure, fused six‐five bicyclic lactones. Herein, the stereoselective polymerization of the racemic monomer by yttrium catalysts bearing tetradentate ligands is reported, where the tethered donor sidearm switches the heteroselectivity of the catalyst to isoselectivity when it is changed from the β‐OMe to β‐NMe2sidearm. The latter catalyst produces an isotactic stereoblock polymer (Pmup to 0.95) that forms the crystalline sc‐material with aTmof up to 171 °C. This sc‐material can be fully depolymerized back to rac‐monomer in a quantitative yield and purity, thus establishing its circular life cycle.

     
    more » « less