Abstract The operation of fracture, diffusion, and intracrystalline‐plastic micromechanisms during semibrittle deformation of rock is directly relevant to understanding mechanical behavior across the brittle‐plastic transition in the crust. An outstanding question is whether (1) the micromechanisms of semibrittle flow can be considered to operate independently, as represented in typical crustal strength profiles across the brittle to plastic transition, or (2) the micromechanisms are coupled such that the transition is represented by a distinct rheology with dependency on effective pressure, temperature, and strain rate. We employ triaxial stress‐cycling experiments to investigate elastic‐plastic and viscoelastic behaviors during semibrittle flow in two distinctly different monomineralic, polycrystalline, synthetic salt‐rocks. During semibrittle flow at high differential stress, granular, low‐porosity, work‐hardened salt‐rocks deform predominantly by grain‐boundary sliding and wing‐crack opening accompanied by minor intragranular dislocation glide. In contrast, fully annealed, near‐zero porosity salt‐rocks flow at lower differential stress by intragranular dislocation glide accompanied by grain‐boundary sliding and opening. Grain‐boundary sliding is frictional during semibrittle flow at higher strain rates, but the associated dispersal of water from fluid inclusions along boundaries can activate fluid‐assisted diffusional sliding at lower strain rates. Changes in elastic properties with semibrittle flow largely reflect activation of sliding along closed grain boundaries. Observed microstructures, pronounced hysteresis and anelasticity during cyclic stressing after semibrittle flow, and stress relaxation behaviors indicate coupled operation of micromechanisms leading to a distinct rheology (hypothesis 2 above).
more »
« less
Anomalous mechanical behavior of nanocrystalline binary alloys under extreme conditions
Abstract Fundamentally, material flow stress increases exponentially at deformation rates exceeding, typically, ~103 s−1, resulting in brittle failure. The origin of such behavior derives from the dislocation motion causing non-Arrhenius deformation at higher strain rates due to drag forces from phonon interactions. Here, we discover that this assumption is prevented from manifesting when microstructural length is stabilized at an extremely fine size (nanoscale regime). This divergent strain-rate-insensitive behavior is attributed to a unique microstructure that alters the average dislocation velocity, and distance traveled, preventing/delaying dislocation interaction with phonons until higher strain rates than observed in known systems; thus enabling constant flow-stress response even at extreme conditions. Previously, these extreme loading conditions were unattainable in nanocrystalline materials due to thermal and mechanical instability of their microstructures; thus, these anomalies have never been observed in any other material. Finally, the unique stability leads to high-temperature strength maintained up to 80% of the melting point (~1356 K).
more »
« less
- Award ID(s):
- 1663287
- PAR ID:
- 10154300
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present a flow law for dislocation‐dominated creep in wet quartz derived from compiled experimental and field‐based rheological data. By integrating the field‐based data, including independently calculated strain rates, deformation temperatures, pressures, and differential stresses, we add constraints for dislocation‐dominated creep at conditions unattainable in quartz deformation experiments. A Markov Chain Monte Carlo (MCMC) statistical analysis computes internally consistent parameters for the generalized flow law: = Aσne−(Q+VP)/RT. From this initial analysis, we identify differenteffectivestress exponents for quartz deformed at confining pressures above and below ∼700 MPa. To minimize the possible effect of confining pressure, compiled data are separated into “low‐pressure” (<560 MPa) and “high‐pressure” (700–1,600 MPa) groups and reanalyzed using the MCMC approach. The “low‐pressure” data set, which is most applicable at midcrustal to lower‐crustal confining pressures, yields the following parameters: log(A) = −9.30 ± 0.66 MPa−n−r s−1;n = 3.5 ± 0.2;r = 0.49 ± 0.13;Q = 118 ± 5 kJ mol−1; andV = 2.59 ± 2.45 cm3 mol−1. The “high‐pressure” data set produces a different set of parameters: log(A) = −7.90 ± 0.34 MPa−n−r s−1;n = 2.0 ± 0.1;r = 0.49 ± 0.13;Q = 77 ± 8 kJ mol−1; andV = 2.59 ± 2.45 cm3 mol−1. Predicted quartz rheology is compared to other flow laws for dislocation creep; the calibrations presented in this study predict faster strain rates under geological conditions by more than 1 order of magnitude. The change innat high confining pressure may result from an increase in the activity of grain size sensitive creep.more » « less
-
Abstract The mechanical behavior and microstructural evolution of a BCC‐phase NbTaTiV refractory multi‐principal element alloy (RMPEA) is studied over a wide range of strain rates (10−3to 103s−1) and temperatures (room temperature to 850 °C). The mechanical property of present RMPEA shows less strain‐rate dependence and strong resistance to softening at high temperatures. Under high strain‐rate loading, the formation of thin type‐I twins is observed, which could lead to an increase in strain‐hardening rates. However, this hardening mechanism competes with adiabatic heating effects, resulting in the deterrence of strain‐hardening behaviors. In contrast, substantial strain‐hardening occurs at cryogenic temperatures due to the formation of twins, which act as stronger barriers to dislocation motion and interact with each other. To further understand the different strain‐hardening behaviors, density functional theory (DFT) calculations predict relatively low stacking fault energies and high twinning stress for the NbTaTiV RMPEA.more » « less
-
null (Ed.)Forming operations are known to be complex, involving many strain states, strain rates, temperatures, strain paths, and friction conditions. Material properties, such as strength and ductility, are large drivers in determining if a material can be formed into a specific part, and for selecting the equipment required for the forming operation. Predicting yielding behavior in situations such as these has been done using yield surfaces to describe material yielding in specific stress states. These models typically use initial mechanical properties, and will require correction if the material has experienced previous straining. Here, we performed interrupted uniaxial tensile testing of a 304 stainless steel to observe the effects of unloading and subsequent reloading on yielding and tensile properties. An increase in yield point developed, in which a higher yield was observed prior to returning to the bulk work hardening behavior, and the magnitude of the yield point varied with unloading conditions and strain imposed. The appearance of a yield point is attributed to strain aging or dislocation trapping at obstacles within the matrix. These results suggest that both strain aging and dislocation trapping mechanisms may be active in the matrix, which may present challenges when forming austenitic stainless and new advanced high strength steels that likely show a similar behavior. These results provide a potential area for refinement in the calculation of yielding criteria that are currently used to predict forming behavior.more » « less
-
Abstract Plastic deformation of olivine at relatively low temperatures (i.e., low‐temperature plasticity) likely controls the strength of the lithospheric mantle in a variety of geodynamic contexts. Unfortunately, laboratory estimates of the strength of olivine deforming by low‐temperature plasticity vary considerably from study to study, limiting confidence in extrapolation to geological conditions. Here we present the results of deformation experiments on olivine single crystals and aggregates conducted in a deformation‐DIA at confining pressures of 5 to 9 GPa and temperatures of 298 to 1473 K. These results demonstrate that, under conditions in which low‐temperature plasticity is the dominant deformation mechanism, fine‐grained samples are stronger at yield than coarse‐grained samples, and the yield stress decreases with increasing temperature. All samples exhibited significant strain hardening until an approximately constant flow stress was reached. The magnitude of the increase in stress from the yield stress to the flow stress was independent of grain size and temperature. Cyclical loading experiments revealed a Bauschinger effect, wherein the initial yield strength is higher than the yield strength during subsequent cycles. Both strain hardening and the Bauschinger effect are interpreted to result from the development of back stresses associated with long‐range dislocation interactions. We calibrated a constitutive model based on these observations, and extrapolation of the model to geological conditions predicts that the strength of the lithosphere at yield is low compared to previous experimental predictions but increases significantly with increasing strain. Our results resolve apparent discrepancies in recent observational estimates of the strength of the oceanic lithosphere.more » « less
An official website of the United States government
