Abstract Germanates are often used as structural analogs of planetary silicates. We have explored the high-pressure phase relations in Mg2GeO4 using diamond-anvil cell experiments combined with synchrotron X-ray diffraction and computations based on density functional theory. Upon room temperature compression, forsterite-type Mg2GeO4 remains stable up to 30 GPa. At higher pressures, a phase transition to a forsterite-III type (Cmc21) structure was observed, which remained stable to the peak pressure of 105 GPa. Using a third-order Birch Murnaghan fit to the experimental data, we obtained V0 = 305.1(3) Å3, K0 = 124.6(14) GPa, and K0′ = 3.86 (fixed) for forsterite-type Mg2GeO4 and V0 = 263.5(15) Å3, K0 = 175(7) GPa, and K0′ = 4.2 (fixed) for the forsterite-III type phase. The forsterite-III type structure was found to be metastable when compared to the stable assemblage of perovskite/post-perovskite + MgO, as observed during laser-heating experiments. Understanding the phase relations and physical properties of metastable phases is crucial for studying the mineralogy of impact sites, understanding metastable wedges in subducting slabs, and interpreting the results of shock compression experiments. 
                        more » 
                        « less   
                    
                            
                            Femtosecond X‐Ray Diffraction of Laser‐Shocked Forsterite (Mg 2 SiO 4 ) to 122 GPa
                        
                    
    
            Abstract The response of forsterite, Mg2SiO4, under dynamic compression is of fundamental importance for understanding its phase transformations and high‐pressure behavior. Here, we have carried out an in situ X‐ray diffraction study of laser‐shocked polycrystalline and single‐crystal forsterite (a‐,b‐, andc‐orientations) from 19 to 122 GPa using the Matter in Extreme Conditions end‐station of the Linac Coherent Light Source. Under laser‐based shock loading, forsterite does not transform to the high‐pressure equilibrium assemblage of MgSiO3bridgmanite and MgO periclase, as has been suggested previously. Instead, we observe forsterite and forsterite III, a metastable polymorph of Mg2SiO4, coexisting in a mixed‐phase region from 33 to 75 GPa for both polycrystalline and single‐crystal samples. Densities inferred from X‐ray diffraction data are consistent with earlier gas‐gun shock data. At higher stress, the response is sample‐dependent. Polycrystalline samples undergo amorphization above 79 GPa. For [010]‐ and [001]‐oriented crystals, a mixture of crystalline and amorphous material is observed to 108 GPa, whereas the [100]‐oriented forsterite adopts an unknown phase at 122 GPa. The first two sharp diffraction peaks of amorphous Mg2SiO4show a similar trend with compression as those observed for MgSiO3in both recent static‐ and laser‐driven shock experiments. Upon release to ambient pressure, all samples retain or revert to forsterite with evidence for amorphous material also present in some cases. This study demonstrates the utility of femtosecond free‐electron laser X‐ray sources for probing the temporal evolution of high‐pressure silicate structures through the nanosecond‐scale events of shock compression and release. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1725349
- PAR ID:
- 10450690
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 126
- Issue:
- 1
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Fe‐Al‐bearing bridgmanite may be the dominant host for ferric iron in Earth's lower mantle. Here we report the synthesis of (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3bridgmanite (FA50) with the highest Fe3+‐Al3+coupled substitution known to date. X‐ray diffraction measurements showed that at ambient conditions, the FA50 adopted the LiNbO3structure. Upon compression at room temperature to 18 GPa, it transformed back into the bridgmanite structure, which remained stable up to 102 GPa and 2,600 K. Fitting Birch‐Murnaghan equation of state of FA50 bridgmanite yieldsV0 = 172.1(4) Å3,K0 = 229(4) GPa withK0′ = 4(fixed). The calculated bulk sound velocity of the FA50 bridgmanite is ~7.7% lower than MgSiO3bridgmanite, mainly because the presence of ferric iron increases the unit‐cell mass by 15.5%. This difference likely represents the upper limit of sound velocity anomaly introduced by Fe3+‐Al3+substitution. X‐ray emission and synchrotron Mössbauer spectroscopy measurements showed that after laser annealing, ~6% of Fe3+cations exchanged with Al3+and underwent the high‐ to low‐spin transition at 59 GPa. The low‐spin proportion of Fe3+increased gradually with pressure and reached 17–31% at 80 GPa. Since the cation exchange and spin transition in this Fe3+‐Al3+‐enriched bridgmanite do not cause resolvable unit‐cell volume reduction, and the increase of low‐spin Fe3+fraction with pressure occurs gradually, the spin transition would not produce a distinct seismic signature in the lower mantle. However, it may influence iron partitioning and isotopic fractionation, thus introducing chemical heterogeneity in the lower mantle.more » « less
- 
            null (Ed.)Because of its far-reaching applications in geophysics and materials science, quartz has been one of the most extensively examined materials under dynamic compression. Despite 50 years of active research, questions remain concerning the structure and transformation of SiO 2 under shock compression. Continuum gas-gun studies have established that under shock loading quartz transforms through an assumed mixed-phase region to a dense high-pressure phase. While it has often been assumed that this high-pressure phase corresponds to the stishovite structure observed in static experiments, there have been no crystal structure data confirming this. In this study, we use gas-gun shock compression coupled with in situ synchrotron x-ray diffraction to interrogate the crystal structure of shock-compressed α-quartz up to 65 GPa. Our results reveal that α-quartz undergoes a phase transformation to a disordered metastable phase as opposed to crystalline stishovite or an amorphous structure, challenging long-standing assumptions about the dynamic response of this fundamental material.more » « less
- 
            null (Ed.)Natural kamacite samples (Fe92.5Ni7.5) from a fragment of the Gibeon meteorite were studied as a proxy material for terrestrial cores to examine phase transition kinetics under shock compression for a range of different pressures up to 140 GPa. In situ time-resolved X-ray diffraction (XRD) data were collected of a body-centered cubic (bcc) kamacite section that transforms to the high-pressure hexagonal close-packed (hcp) phase with sub-nanosecond temporal resolution. The coarse-grained crystal of kamacite rapidly transformed to highly oriented crystallites of the hcp phase at maximum compression. The hcp phase persisted for as long as 9.5 ns following shock release. Comparing the c/a ratio with previous static and dynamic work on Fe and Fe-rich Fe-Ni alloys, it was found that some shots exhibit a larger than ideal c/a ratio, up to nearly 1.65. This work represents the first time-resolved laser shock compression structural study of a natural iron meteorite, relevant for understanding the dynamic material properties of metallic planetary bodies during impact events and Earth’s core elasticity.more » « less
- 
            Mg 2 GeO 4 is important as an analog for the ultrahigh-pressure behavior of Mg 2 SiO 4 , a major component of planetary interiors. In this study, we have investigated magnesium germanate to 275 GPa and over 2,000 K using a laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction and density functional theory (DFT) computations. The experimental results are consistent with the formation of a phase with disordered Mg and Ge, in which germanium adopts eightfold coordination with oxygen: the cubic, Th 3 P 4 -type structure. DFT computations suggest partial Mg-Ge order, resulting in a tetragonal I 4 ¯ 2 d structure indistinguishable from I 4 ¯ 3 d Th 3 P 4 in our experiments. If applicable to silicates, the formation of this highly coordinated and intrinsically disordered phase may have important implications for the interior mineralogy of large, rocky extrasolar planets.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
