skip to main content


Title: Merging fNIRS-EEG Brain Monitoring and Body Motion Capture to Distinguish Parkinson’s Disease
Functional connectivity between the brain and body kinematics has largely not been investigated due to the requirement of motionlessness in neuroimaging techniques such as functional magnetic resonance imaging (fMRI). However, this connectivity is disrupted in many neurodegenerative disorders, including Parkinson’s Disease (PD), a neurological progressive disorder characterized by movement symptoms including slowness of movement, stiffness, tremors at rest, and walking and standing instability. In this study, brain activity is recorded through functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG), and body kinematics were captured by a motion capture system (Mocap) based on an inertial measurement unit (IMU) for gross movements (large movements such as limb kinematics), and the WearUp glove for fine movements (small range movements such as finger kinematics). PD and neurotypical (NT) participants were recruited to perform 8 different movement tasks. The recorded data from each modality have been analyzed individually, and the processed data has been used for classification between the PD and NT groups. The average changes in oxygenated hemoglobin (HbO2) from fNIRS, EEG power spectral density in the Theta, Alpha, and Beta bands, acceleration vector from Mocap, and normalized WearUp flex sensor data were used for classification. 12 different support vector machine (SVM) classifiers have been used on different datasets such as only fNIRS data, only EEG data, hybrid fNIRS/EEG data, and all the fused data for two classification scenarios: classifying PD and NT based on individual activities, and all activity data fused together. The PD and NT group could be distinguished with more than 83% accuracy for each individual activity. For all the fused data, the PD and NT groups are classified with 81.23%, 92.79%, 92.27%, and 93.40% accuracy for the fNIRS only, EEG only, hybrid fNIRS/EEG, and all fused data, respectively. The results indicate that the overall performance of classification in distinguishing PD and NT groups improves when using both brain and body data.  more » « less
Award ID(s):
1652538
NSF-PAR ID:
10154597
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Neural Systems and Rehabilitation Engineering
ISSN:
1534-4320
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objective. Transcutaneous spinal cord stimulation (TSS) has been shown to be a promising non-invasive alternative to epidural spinal cord stimulation for improving outcomes of people with spinal cord injury (SCI). However, studies on the effects of TSS on cortical activation are limited. Our objectives were to evaluate the spatiotemporal effects of TSS on brain activity, and determine changes in functional connectivity under several different stimulation conditions. As a control, we also assessed the effects of functional electrical stimulation (FES) on cortical activity. Approach . Non-invasive scalp electroencephalography (EEG) was recorded during TSS or FES while five neurologically intact participants performed one of three lower-limb tasks while in the supine position: (1) A no contraction control task, (2) a rhythmic contraction task, or (3) a tonic contraction task. After EEG denoising and segmentation, independent components (ICs) were clustered across subjects to characterize sensorimotor networks in the time and frequency domains. ICs of the event related potentials (ERPs) were calculated for each cluster and condition. Next, a Generalized Partial Directed Coherence (gPDC) analysis was performed on each cluster to compare the functional connectivity between conditions and tasks. Main results . IC analysis of EEG during TSS resulted in three clusters identified at Brodmann areas (BA) 9, BA 6, and BA 4, which are areas associated with working memory, planning, and movement control. Lastly, we found significant ( p  < 0.05, adjusted for multiple comparisons) increases and decreases in functional connectivity of clusters during TSS, but not during FES when compared to the no stimulation conditions. Significance. The findings from this study provide evidence of how TSS recruits cortical networks during tonic and rhythmic lower limb movements. These results have implications for the development of spinal cord-based computer interfaces, and the design of neural stimulation devices for the treatment of pain and sensorimotor deficit. 
    more » « less
  2. Multimodal data fusion is one of the current primary neuroimaging research directions to overcome the fundamental limitations of individual modalities by exploiting complementary information from different modalities. Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) are especially compelling modalities due to their potentially complementary features reflecting the electro-hemodynamic characteristics of neural responses. However, the current multimodal studies lack a comprehensive systematic approach to properly merge the complementary features from their multimodal data. Identifying a systematic approach to properly fuse EEG-fNIRS data and exploit their complementary potential is crucial in improving performance. This paper proposes a framework for classifying fused EEG-fNIRS data at the feature level, relying on a mutual information-based feature selection approach with respect to the complementarity between features. The goal is to optimize the complementarity, redundancy and relevance between multimodal features with respect to the class labels as belonging to a pathological condition or healthy control. Nine amyotrophic lateral sclerosis (ALS) patients and nine controls underwent multimodal data recording during a visuo-mental task. Multiple spectral and temporal features were extracted and fed to a feature selection algorithm followed by a classifier, which selected the optimized subset of features through a cross-validation process. The results demonstrated considerably improved hybrid classification performance compared to the individual modalities and compared to conventional classification without feature selection, suggesting a potential efficacy of our proposed framework for wider neuro-clinical applications.

     
    more » « less
  3. Obeid, Iyad Selesnick (Ed.)
    The Temple University Hospital EEG Corpus (TUEG) [1] is the largest publicly available EEG corpus of its type and currently has over 5,000 subscribers (we currently average 35 new subscribers a week). Several valuable subsets of this corpus have been developed including the Temple University Hospital EEG Seizure Corpus (TUSZ) [2] and the Temple University Hospital EEG Artifact Corpus (TUAR) [3]. TUSZ contains manually annotated seizure events and has been widely used to develop seizure detection and prediction technology [4]. TUAR contains manually annotated artifacts and has been used to improve machine learning performance on seizure detection tasks [5]. In this poster, we will discuss recent improvements made to both corpora that are creating opportunities to improve machine learning performance. Two major concerns that were raised when v1.5.2 of TUSZ was released for the Neureka 2020 Epilepsy Challenge were: (1) the subjects contained in the training, development (validation) and blind evaluation sets were not mutually exclusive, and (2) high frequency seizures were not accurately annotated in all files. Regarding (1), there were 50 subjects in dev, 50 subjects in eval, and 592 subjects in train. There was one subject common to dev and eval, five subjects common to dev and train, and 13 subjects common between eval and train. Though this does not substantially influence performance for the current generation of technology, it could be a problem down the line as technology improves. Therefore, we have rebuilt the partitions of the data so that this overlap was removed. This required augmenting the evaluation and development data sets with new subjects that had not been previously annotated so that the size of these subsets remained approximately the same. Since these annotations were done by a new group of annotators, special care was taken to make sure the new annotators followed the same practices as the previous generations of annotators. Part of our quality control process was to have the new annotators review all previous annotations. This rigorous training coupled with a strict quality control process where annotators review a significant amount of each other’s work ensured that there is high interrater agreement between the two groups (kappa statistic greater than 0.8) [6]. In the process of reviewing this data, we also decided to split long files into a series of smaller segments to facilitate processing of the data. Some subscribers found it difficult to process long files using Python code, which tends to be very memory intensive. We also found it inefficient to manipulate these long files in our annotation tool. In this release, the maximum duration of any single file is limited to 60 mins. This increased the number of edf files in the dev set from 1012 to 1832. Regarding (2), as part of discussions of several issues raised by a few subscribers, we discovered some files only had low frequency epileptiform events annotated (defined as events that ranged in frequency from 2.5 Hz to 3 Hz), while others had events annotated that contained significant frequency content above 3 Hz. Though there were not many files that had this type of activity, it was enough of a concern to necessitate reviewing the entire corpus. An example of an epileptiform seizure event with frequency content higher than 3 Hz is shown in Figure 1. Annotating these additional events slightly increased the number of seizure events. In v1.5.2, there were 673 seizures, while in v1.5.3 there are 1239 events. One of the fertile areas for technology improvements is artifact reduction. Artifacts and slowing constitute the two major error modalities in seizure detection [3]. This was a major reason we developed TUAR. It can be used to evaluate artifact detection and suppression technology as well as multimodal background models that explicitly model artifacts. An issue with TUAR was the practicality of the annotation tags used when there are multiple simultaneous events. An example of such an event is shown in Figure 2. In this section of the file, there is an overlap of eye movement, electrode artifact, and muscle artifact events. We previously annotated such events using a convention that included annotating background along with any artifact that is present. The artifacts present would either be annotated with a single tag (e.g., MUSC) or a coupled artifact tag (e.g., MUSC+ELEC). When multiple channels have background, the tags become crowded and difficult to identify. This is one reason we now support a hierarchical annotation format using XML – annotations can be arbitrarily complex and support overlaps in time. Our annotators also reviewed specific eye movement artifacts (e.g., eye flutter, eyeblinks). Eye movements are often mistaken as seizures due to their similar morphology [7][8]. We have improved our understanding of ocular events and it has allowed us to annotate artifacts in the corpus more carefully. In this poster, we will present statistics on the newest releases of these corpora and discuss the impact these improvements have had on machine learning research. We will compare TUSZ v1.5.3 and TUAR v2.0.0 with previous versions of these corpora. We will release v1.5.3 of TUSZ and v2.0.0 of TUAR in Fall 2021 prior to the symposium. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation’s Industrial Innovation and Partnerships (IIP) Research Experience for Undergraduates award number 1827565. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] I. Obeid and J. Picone, “The Temple University Hospital EEG Data Corpus,” in Augmentation of Brain Function: Facts, Fiction and Controversy. Volume I: Brain-Machine Interfaces, 1st ed., vol. 10, M. A. Lebedev, Ed. Lausanne, Switzerland: Frontiers Media S.A., 2016, pp. 394 398. https://doi.org/10.3389/fnins.2016.00196. [2] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Frontiers in Neuroinformatics, vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [3] A. Hamid et, al., “The Temple University Artifact Corpus: An Annotated Corpus of EEG Artifacts.” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2020, pp. 1-3. https://ieeexplore.ieee.org/document/9353647. [4] Y. Roy, R. Iskander, and J. Picone, “The NeurekaTM 2020 Epilepsy Challenge,” NeuroTechX, 2020. [Online]. Available: https://neureka-challenge.com/. [Accessed: 01-Dec-2021]. [5] S. Rahman, A. Hamid, D. Ochal, I. Obeid, and J. Picone, “Improving the Quality of the TUSZ Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2020, pp. 1–5. https://ieeexplore.ieee.org/document/9353635. [6] V. Shah, E. von Weltin, T. Ahsan, I. Obeid, and J. Picone, “On the Use of Non-Experts for Generation of High-Quality Annotations of Seizure Events,” Available: https://www.isip.picone press.com/publications/unpublished/journals/2019/elsevier_cn/ira. [Accessed: 01-Dec-2021]. [7] D. Ochal, S. Rahman, S. Ferrell, T. Elseify, I. Obeid, and J. Picone, “The Temple University Hospital EEG Corpus: Annotation Guidelines,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/tuh_eeg/annotations/. [8] D. Strayhorn, “The Atlas of Adult Electroencephalography,” EEG Atlas Online, 2014. [Online]. Availabl 
    more » « less
  4. Brain-machine interfaces (BMIs) have become increasingly popular in restoring the lost motor function in individuals with disabilities. Several research studies suggest that the CNS may employ synergies or movement primitives to reduce the complexity of control rather than controlling each DoF independently, and the synergies can be used as an optimal control mechanism by the CNS in simplifying and achieving complex movements. Our group has previously demonstrated neural decoding of synergy-based hand movements and used synergies effectively in driving hand exoskeletons. In this study, ten healthy right-handed participants were asked to perform six types of hand grasps representative of the activities of daily living while their neural activities were recorded using electroencephalography (EEG). From half of the participants, hand kinematic synergies were derived, and a neural decoder was developed, based on the correlation between hand synergies and corresponding cortical activity, using multivariate linear regression. Using the synergies and the neural decoder derived from the first half of the participants and only cortical activities from the remaining half of the participants, their hand kinematics were reconstructed with an average accuracy above 70%. Potential applications of synergy-based BMIs for controlling assistive devices in individuals with upper limb motor deficits, implications of the results in individuals with stroke and the limitations of the study were discussed. 
    more » « less
  5. Obeid, Iyad ; Selesnick, Ivan ; Picone, Joseph (Ed.)
    The Neural Engineering Data Consortium has recently developed a new subset of its popular open source EEG corpus – TUH EEG (TUEG) [1]. The TUEG Corpus is the world’s largest open source corpus of EEG data and currently has over 3,300 subscribers. There are several valuable subsets of this data, including the TUH Seizure Detection Corpus (TUSZ) [2], which was featured in the Neureka 2020 Epilepsy Challenge [3]. In this poster, we present a new subset of the TUEG Corpus – the TU Artifact Corpus. This corpus contains 310 EEG files in which every artifact has been annotated. This data can be used to evaluate artifact reduction technology. Since TUEG is comprised of actual clinical data, the set of artifacts appearing in the data is rich and challenging. EEG artifacts are defined as waveforms that are not of cerebral origin and may be affected by numerous external and or physiological factors. These extraneous signals are often mistaken for seizures due to their morphological similarity in amplitude and frequency [4]. Artifacts often lead to raised false alarm rates in machine learning systems, which poses a major challenge for machine learning research. Most state-of-the-art systems use some form of artifact reduction technology to suppress these events. The corpus was annotated using a five-way classification that was developed to meet the needs of our constituents. Brief descriptions of each form of the artifact are provided in Ochal et al. [4]. The five basic tags are: • Chewing (CHEW): An artifact resulting from the tensing and relaxing of the jaw muscles. Chewing is a subset of the muscle artifact class. Chewing has the same characteristic high frequency sharp waves with 0.5 sec baseline periods between bursts. This artifact is generally diffuse throughout the different regions of the brain. However, it might have a higher level of activity in one hemisphere. Classification of a muscle artifact as chewing often depends on whether the accompanying patient report mentions any chewing, since other muscle artifacts can appear superficially similar to chewing artifact. • Electrode (ELEC): An electrode artifact encompasses various electrode related artifacts. Electrode pop is an artifact characterized by channels using the same electrode “spiking” with an electrographic phase reversal. Electrostatic is an artifact caused by movement or interference of electrodes and or the presence of dissimilar metals. A lead artifact is caused by the movement of electrodes from the patient’s head and or poor connection of electrodes. This results in disorganized and high amplitude slow waves. • Eye Movement (EYEM): A spike-like waveform created during patient eye movement. This artifact is usually found on all of the frontal polar electrodes with occasional echoing on the frontal electrodes. • Muscle (MUSC): A common artifact with high frequency, sharp waves corresponding to patient movement. These waveforms tend to have a frequency above 30 Hz with no specific pattern, often occurring because of agitation in the patient. • Shiver (SHIV): A specific and sustained sharp wave artifact that occurs when a patient shivers, usually seen on all or most channels. Shivering is a relatively rare subset of the muscle artifact class. Since these artifacts can overlap in time, a concatenated label format was implemented as a compromise between the limitations of our annotation tool and the complexity needed in an annotation data structure used to represent these overlapping events. We distribute an XML format that easily handles overlapping events. Our annotation tool [5], like most annotation tools of this type, is limited to displaying and manipulating a flat or linear annotation. Therefore, we encode overlapping events as a series of concatenated names using symbols such as: • EYEM+CHEW: eye movement and chewing • EYEM+SHIV: eye movement and shivering • CHEW+SHIV: chewing and shivering An example of an overlapping annotation is shown below in Figure 1. This release is an update of TUAR v1.0.0, which was a partially annotated database. In v1.0.0, a similar five way system was used as well as an additional “null” tag. The “null” tag covers anything that was not annotated, including instances of artifact. Only a limited number of artifacts were annotated in v1.0.0. In this updated version, every instance of an artifact is annotated; ultimately, this provides the user with confidence that any part of the record that is not annotated with one of the five classes does not contain an artifact. No new files, patients, or sessions were added in v2.0.0. However, the data was reannotated with these standards. The total number of files remains the same, but the number of artifact events increases significantly. Complete statistics will be provided on the corpus once annotation is complete and the data is released. This is expected to occur in early July – just after the IEEE SPMB submission deadline. The TUAR Corpus is an open-source database that is currently available for use by any registered member of our consortium. To register and receive access, please follow the instructions provided at this web page: https://www.isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml. The data is located here: https://www.isip.piconepress.com/projects/tuh_eeg/downloads/tuh_eeg_artifact/v2.0.0/. 
    more » « less