skip to main content

Title: North-East Pacific: Interactions on intertidal hard substrata and alteration by human impacts
The flora and fauna of the rocky intertidal zone are among the most biologically diverse on the planet – not in terms of species richness, but of the diversity and density of higher taxonomic categories. All of the major animal phyla can be found in the rocky intertidal, sometimes with representatives of each inhabiting a single rock or boulder. In addition to this phylogenetic diversity, the rocky intertidal may be one of the most ancient of habitats because it is a necessary and continual result of celestial mechanics set in motion prior to the diversification of life. When advising readers to ‘. . . look from the tide pool to the stars and then back to the tide pool again’, Steinbeck and Ricketts (1951) seemed to underline this point while advocating for a holistic approach to ecological research. A few years earlier, Ricketts and Calvin set out to comprehensively document what was then known about the ecology of the north-eastern Pacific (NEP) rocky intertidal in their classic book, Between Pacific Tides (Ricketts et al., 1985). Since the first edition of Between Pacific Tides (1939), the NEP has become widely recognised as an ideal natural laboratory for experimental ecologists and as a platform for more observationally focussed ecologists seeking to understand macroecological and biogeographical patterns. It is, of course, outside the scope of this chapter to attempt a comprehensive review more » of this extensive research. Rather, we focus on a couple of broad topics that are central to our current understanding of fundamental ecological, evolutionary and conservation topics that have benefitted from NEP rocky intertidal case studies. The first half of the chapter deals with recent work on the biotic and abiotic factors influencing patterns of range wide abundance and distribution of species, and how such patterns are being affected by human impacts. The second half reviews the latest research on the role of direct and indirect human impacts on topdown and bottom-up control of rocky intertidal community structure and functioning. « less
Award ID(s):
1735911 1735743
Publication Date:
Journal Name:
Interactions in the Marine Benthos: Global Patterns and Processes
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Foundation species, which help maintain habitat and ecosystem functioning, are declining due to anthropogenic impacts. Within the rocky intertidal ecosystem, studies have investigated the effects of foundation species on community structure and some resource fluxes; however, how intertidal foundation species loss will affect multiple facets of ecosystem functioning in concert remains unknown. We studied the direct and indirect effects of foundation species loss of mussels Mytilus californianus and surfgrass Phyllospadix spp. on community structure, fluxes (light, temperature, dissolved oxygen [DO], dissolved inorganic nutrients, pH T ), and ecosystem metabolism (net ecosystem calcification [NEC] and net ecosystem production [NEP]) in central Oregon using in situ tide pool manipulations. Surfgrass loss increased microalgae cover, increased average maximum light by 142% and average maximum temperature by 3.8°C, increased DO and pH T values, and indirectly increased NEP and NEC via increased maximum temperature and pH T respectively. Mussel loss increased microalgae cover, increased average maximum light by 5.8% and average maximum temperature by 1.3°C, increased DO and pH T values, and indirectly increased NEP via increased producer cover. Shifts in baseline nutrient concentrations and temperature values from coastal upwelling influenced ecosystem metabolism in pools with intact foundation species. Our results indicate that asmore »communities respond to foundation species loss, ecosystem functioning depends on the dominant community present and biologically or physically driven shifts in biogeochemistry. This study highlights the importance of the connection between community and ecosystem ecology in understanding the magnitude of changes occurring with anthropogenically-driven intertidal foundation species loss.« less
  2. Abstract The rocky intertidal zone is a highly dynamic and thermally variable ecosystem, where the combined influences of solar radiation, air temperature and topography can lead to differences greater than 15°C over the scale of centimetres during aerial exposure at low tide. For most intertidal organisms this small-scale heterogeneity in microclimates can have enormous influences on survival and physiological performance. However, the potential ecological importance of environmental heterogeneity in determining ecological responses to climate change remains poorly understood. We present a novel framework for generating spatially explicit models of microclimate heterogeneity and patterns of thermal physiology among interacting organisms. We used drone photogrammetry to create a topographic map (digital elevation model) at a resolution of 2 × 2 cm from an intertidal site in Massachusetts, which was then fed into to a model of incident solar radiation based on sky view factor and solar position. These data were in turn used to drive a heat budget model that estimated hourly surface temperatures over the course of a year (2017). Body temperature layers were then converted to thermal performance layers for organisms, using thermal performance curves, creating ‘physiological landscapes’ that display spatially and temporally explicit patterns of ‘microrefugia’. Our framework shows how non-linear interactionsmore »between these layers lead to predictions about organismal performance and survivorship that are distinct from those made using any individual layer (e.g. topography, temperature) alone. We propose a new metric for quantifying the ‘thermal roughness’ of a site (RqT, the root mean square of spatial deviations in temperature), which can be used to quantify spatial and temporal variability in temperature and performance at the site level. These methods facilitate an exploration of the role of micro-topographic variability in driving organismal vulnerability to environmental change using both spatially explicit and frequency-based approaches.« less
  3. Intertidal communities of wave-swept rocky shores have served as a powerful model system for experiments in ecology, and mussels (the dominant competitor for space in the mid-intertidal zone) play a central role in determining community structure in this physically stressful habitat. Consequently, the ability to account for mussels’ physiological responses to thermal stress affects ecologists’ capacity to predict the impacts of a warming climate on this ecosystem. Here, we examined the effect of heating rate on cardiac thermal tolerance in the ribbed mussel, Mytilus californianus, comparing populations from high and low sites in the intertidal zone where emersion duration leads to different mean daily heating rates. Two temperature-related cardiac variables were examined: (1) the critical temperature (Tcrit) at which heart rate (HR) precipitously declines, and (2) flatline temperature (FLT) where HR reaches zero. Mussels were heated in air at slow, moderate and fast rates, and HR was measured via an infrared sensor affixed to the shell. Faster heating rates significantly increased Tcrit in high- but not low-zone mussels, and Tcrit was higher in high- versus low-zone mussels, especially at the fastest heating rate. By contrast, FLT did not differ between zones, and was minimally affected by heating rate. As heatingmore »rate significantly impacted high- but not low-zone mussels’ cardiac thermal tolerance, realistic zone-specific heating rates must be used in laboratory tests if those tests are to provide accurate information for ecological models attempting to predict the effects of increasing temperature on intertidal communities.« less
  4. Abstract. In recent centuries, human activities have greatly modified thegeomorphology of coastal regions. However, studies of historical andpossible future changes in coastal flood extremes typically ignore theinfluence of geomorphic change. Here, we quantify the influence of 20th-century man-made changes to Jamaica Bay, New York City, on present-day storm tides. We develop and validate a hydrodynamic model for the 1870s based on detailed maps of bathymetry, seabed characteristics, topography, and tide observations for use alongside a present-day model. Predominantly through dredging, landfill, and inlet stabilization, the average water depth of the bay increased from 1.7 to 4.5 m, tidal surface area decreased from 92 to 72 km2, and the inlet minimum cross-sectional area expanded from 4800 to 8900 m2. Total (freshwater plus salt) marsh habitat area has declined from 61 to 15 km2 and intertidal unvegetated habitat area from 17 to 4.6 km2. A probabilistic flood hazard assessment with simulations of 144 storm events reveals that the landscape changes caused an increase of 0.28 m (12 %) in the 100-year storm tide, even larger than the influence of global sea level rise of about 0.23 m since the 1870s. Specific anthropogenic changes to estuary depth and area as well as inlet depth and width are shown through targeted modeling and dynamics-based considerations to be the mostmore »important drivers of increasing storm tides.« less
  5. Ciliates are abundant microplankton that are widely distributed in the ocean. In this paper, the distribution patterns of ciliate diversity in the South China Sea (SCS) were analyzed by compiling community data from previous publications. Based on morphological identification, a total of 592 ciliate species have been recorded in the SCS. The ciliate communities in intertidal, neritic and oceanic water areas were compared in terms of taxonomy, motility and feeding habit composition, respectively. Significant community variation was revealed among the three areas, but the difference between the intertidal area and the other two areas was more significant than that between neritic and oceanic areas. The distributions of ciliates within each of the three areas were also analyzed. In the intertidal water, the community was not significantly different among sites but did differ among habitat types. In neritic and oceanic areas, the spatial variation of communities among different sites was clearly observed. Comparison of communities by taxonomic and ecological traits (motility and feeding habit) indicated that these traits similarly revealed the geographical pattern of ciliates on a large scale in the SCS, but to distinguish the community variation on a local scale, taxonomic traits has higher resolution than ecological traits. Inmore »addition, we assessed the relative influences of environmental and spatial factors on assembly of ciliate communities in the SCS and found that environmental selection is the major process structuring the taxonomic composition in intertidal water, while spatial processes played significant roles in influencing the taxonomic composition in neritic and oceanic water. Among ecological traits, environmental selection had the most important impact on distributions.« less