skip to main content


Title: A marine protected area network does not confer community structure resilience to a marine heatwave across coastal ecosystems
Abstract

Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014–2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no‐take state marine reserves, and 76 partial‐take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no‐take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat‐wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem‐wide consequences resulting from acute climate‐driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.

 
more » « less
Award ID(s):
1831937
NSF-PAR ID:
10431591
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
29
Issue:
19
ISSN:
1354-1013
Page Range / eLocation ID:
p. 5634-5651
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Anthropogenic stressors from climate change can affect individual species, community structure, and ecosystem function. Marine heatwaves (MHWs) are intense thermal anomalies where water temperature is significantly elevated for five or more days. Climate projections suggest an increase in the frequency and severity of MHWs in the coming decades. While there is evidence that marine protected areas (MPAs) may be able to buffer individual species from climate impacts, there is not sufficient evidence to support the idea that MPAs can mitigate large-scale changes in marine communities in response to MHWs. California experienced an intense MHW and subsequent El Niño Southern Oscillation event from 2014 to 2016. We sought to examine changes in rocky reef fish communities at four MPAs and associated reference sites in relation to the MHW. We observed a decline in taxonomic diversity and a profound shift in trophic diversity inside and outside MPAs following the MHW. However, MPAs seemed to dampen the loss of trophic diversity and in the four years following the MHW, taxonomic diversity recovered 75% faster in the MPAs compared to reference sites. Our results suggest that MPAs may contribute to long-term resilience of nearshore fish communities through both resistance to change and recovery from warming events.

     
    more » « less
  2. Abstract

    Integrating results from monitoring efforts conducted across diverse marine ecosystems provides opportunities to reveal novel biogeographic patterns at larger spatial scales and among multiple taxonomic groups. We investigated large‐scale patterns of community similarity across major taxonomic groups (invertebrates, fishes or algae) from a range of marine ecosystems (rocky intertidal, sandy intertidal, kelp forest, shallow and deep soft‐bottom subtidal) in southern California. Because monitoring sites and methods varied among programs, site data were averaged over larger geographic regions to facilitate comparisons. For the majority of individual community types, locations that were geographically near or environmentally similar to one another tended to have more similar communities. However, our analysis found that this pattern of within community type similarity did not result in all pairs of these community types exhibiting high levels of cross‐community congruence. Rocky intertidal algae communities had high levels of congruence with the spatial patterns observed for almost all of the other (fish or invertebrate) community types. This was not surprising given algal distributions are known to be highly influenced by bottom‐up factors and they are important as food and habitat for marine fishes and invertebrates. However, relatively few pairwise comparisons of the spatial patterns between a fish community and an invertebrate community yielded significant correlations. These community types are generally comprised of assemblages of higher trophic level species, and additional ecological and anthropogenic factors may have altered their spatial patterns of community similarity. In most cases pairs of invertebrate community types and pairs of fish community types exhibited similar spatial patterns, although there were some notable exceptions. These findings have important implications for the design and interpretation of results of long‐term monitoring programs.

     
    more » « less
  3. Abstract

    Marine protected area (MPA) networks, with varying degrees of protection and use, can be useful tools to achieve both conservation and fisheries management benefits. Assessing whetherMPAnetworks meet their objectives requires data from Before the establishment of the network to better discern natural spatiotemporal variation and preexisting differences from the response to protection. Here, we use a Progressive‐ChangeBACIPSapproach to assess the ecological effects of a network of five fully and three moderately protectedMPAs on fish communities in two coral reef habitats (lagoon and fore reef) based on a time series of data collected five times (over three years) Before and 12 times (over nine years) After the network's establishment on the island of Moorea, French Polynesia. At the network scale, on the fore reef, density and biomass of harvested fishes increased by 19.3% and 24.8%, respectively, in protected areas relative to control fished areas. Fully protected areas provided greater ecological benefits than moderately protected areas. In the lagoon, density and biomass of harvested fishes increased, but only the 31% increase in biomass in fully protectedMPAs was significant. Non‐harvested fishes did not respond to protection in any of the habitats. We propose that these responses to protection were small, relative to otherMPAassessments, due to limited compliance and weak surveillance, although other factors such as the occurrence of a crown‐of‐thorns starfish outbreak and a cyclone after the network was established may also have impeded the ability of the network to provide benefits. Our results highlight the importance of using fully protectedMPAs over moderately protectedMPAs to achieve conservation objectives, even in complex social–ecological settings, but also stress the need to monitor effects and adapt management based on ongoing assessments.

     
    more » « less
  4. Marine protected areas (MPAs) are a key tool for achieving goals for biodiversity conservation and human well-being, including improving climate resilience and equitable access to nature. At a national level, they are central components in the U.S. commitment to conserve at least 30% of U.S. waters by 2030. By definition, the primary goal of an MPA is the long-term conservation of nature; however, not all MPAs provide the same ecological and social benefits. A U.S. system of MPAs that is equitable, well-managed, representative and connected, and includes areas at a level of protection that can deliver desired outcomes is best positioned to support national goals. We used a new MPA framework, The MPA Guide, to assess the level of protection and stage of establishment of the 50 largest U.S. MPAs, which make up 99.7% of the total U.S. MPA area (3.19 million km2). Over 96% of this area, including 99% of that which is fully or highly protected against extractive or destructive human activities, is in the central Pacific ocean. Total MPA area in other regions is sparse – only 1.9% of the U.S. ocean excluding the central Pacific is protected in any kind of MPA (120,976 km2). Over three quarters of the non-central Pacific MPA area is lightly or minimally protected against extractive or destructive human activities. These results highlight an urgent need to improve the quality, quantity, and representativeness of MPA protection in U.S. waters to bring benefits to human and marine communities. We identify and review the state of the science, including focal areas for achieving desired MPA outcomes and lessons learned from places where sound ecological and social design principles come together in MPAs that are set up to achieve national goals for equity, climate resilience, and biodiversity conservation. We recommend key opportunities for action specific to the U.S. context, including increasing funding, research, equity, and protection level for new and existing U.S. MPAs.

     
    more » « less
  5. Abstract

    Some of the longest and most comprehensive marine ecosystem monitoring programs were established in the Gulf of Alaska following the environmental disaster of the Exxon Valdez oil spill over 30 years ago. These monitoring programs have been successful in assessing recovery from oil spill impacts, and their continuation decades later has now provided an unparalleled assessment of ecosystem responses to another newly emerging global threat, marine heatwaves. The 2014–2016 northeast Pacific marine heatwave (PMH) in the Gulf of Alaska was the longest lasting heatwave globally over the past decade, with some cooling, but also continued warm conditions through 2019. Our analysis of 187 time series from primary production to commercial fisheries and nearshore intertidal to offshore oceanic domains demonstrate abrupt changes across trophic levels, with many responses persisting up to at least 5 years after the onset of the heatwave. Furthermore, our suite of metrics showed novel community-level groupings relative to at least a decade prior to the heatwave. Given anticipated increases in marine heatwaves under current climate projections, it remains uncertain when or if the Gulf of Alaska ecosystem will return to a pre-PMH state.

     
    more » « less