skip to main content


Title: Vapor–Liquid–Solid Growth and Optoelectronics of Gallium Sulfide van der Waals Nanowires
Nanowires of layered van der Waals (vdW) crystals are of interest due to structural characteristics and emerging properties that have no equivalent in conventional 3D crystalline nanostructures. Here, vapor-liquid-solid growth, optoelectronics, and photonics of GaS vdW nanowires are studied. Electron microscopy and diffraction demonstrate the formation of high-quality layered nanostructures with different vdW layer orientation. GaS nanowires with vdW stacking perpendicular to the wire axis have ribbon-like morphologies with lengths up to 100 micrometers and uniform width. Wires with axial layer stacking show tapered morphologies and a corrugated surface due to twinning between successive few-layer GaS sheets. Layered GaS nanowires are excellent wide-bandgap optoelectronic materials with Eg = 2.65 eV determined by single-nanowire absorption measurements. Nanometer-scale spectroscopy on individual nanowires shows intense blue band-edge luminescence along with longer wavelength emissions due to transitions between gap states, and photonic properties such as interference of confined waveguide modes propagating within the nanowires. The combined results show promise for applications in electronics, optoelectronics and photonics, as well as photo- or electrocatalysis owing to a high density of reactive edge sites, and intercalation-type energy storage benefitting from facile access to the interlayer vdW gaps.  more » « less
Award ID(s):
1904843
NSF-PAR ID:
10155008
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACS Nano
ISSN:
1936-0851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Energy transport dynamics in different nanostructures are crucial to both fundamental understanding and practical applications for heat management at the nanoscale. It has been reported that thermal conductivity may be severely impacted by stacking disorder in layered materials. Here, using ultrafast electron diffraction in the reflection geometry for direct probing of structural dynamics, we report a fundamental behavioral difference due to stacking order in an entirely different system—solid-supported methanol assemblies whose layered structures may resemble those of two-dimensional (2D) and van der Waals (vdW) solids but with much weaker in-plane hydrogen bonds. Thermal diffusion is found to be the transport mechanism across 2D-layered films without a cross-plane stacking order. In stark contrast, much faster ballistic energy transport is observed in 3D-ordered crystalline solids. The major change in such dynamical behavior may be associated with the efficiency of vibrational coupling between vdW-interacted methanol layers, which demonstrates a strong structure‒property relation. 
    more » « less
  2. Self-assembly of vertically aligned III–V semiconductor nanowires (NWs) on two-dimensional (2D) van der Waals (vdW) nanomaterials allows for integration of novel mixed-dimensional nanosystems with unique properties for optoelectronic and nanoelectronic device applications. Here, selective-area vdW epitaxy (SA-vdWE) of InAs NWs on isolated 2D molybdenum disulfide (MoS 2 ) domains is reported for the first time. The MOCVD growth parameter space ( i.e. , V/III ratio, growth temperature, and total molar flow rates of metalorganic and hydride precursors) is explored to achieve pattern-free positioning of single NWs on isolated multi-layer MoS 2 micro-plates with one-to-one NW-to-MoS 2 domain placement. The introduction of a pre-growth poly- l -lysine surface treatment is highlighted as a necessary step for mitigation of InAs nucleation along the edges of triangular MoS 2 domains and for NW growth along the interior region of 2D micro-plates. Analysis of NW crystal structures formed under the optimal SA-vdWE condition revealed a disordered combination of wurtzite and zinc-blend phases. A transformation of the NW sidewall faceting structure is observed, resulting from simultaneous radial overgrowth during axial NW synthesis. A common lattice arrangement between axially-grown InAs NW core segments and MoS 2 domains is described as the epitaxial basis for vertical NW growth. A model is proposed for a common InAs/MoS 2 sub-lattice structure, consisting of three multiples of the cubic InAs unit cell along the [21̄1̄] direction, commensurately aligned with a 14-fold multiple of the Mo–Mo (or S–S) spacing along the [101̄0] direction of MoS 2 hexagonal lattice. The SA-vdWE growth mode described here enables controlled hybrid integration of mixed-dimensional III–V-on-2D heterostructures as novel nanosystems for applications in optoelectronics, nanoelectronics, and quantum enabling technologies. 
    more » « less
  3. Heterogeneous self-assembly of III–V nanostructures on inert two-dimensional monolayer materials enables novel hybrid nanosystems with unique properties that can be exploited for low-cost and low-weight flexible optoelectronic and nanoelectronic device applications. Here, the pseudo-van der Waals epitaxy (vdWE) growth parameter space for heterogeneous integration of InAs nanowires (NWs) with continuous films of single layer graphene (SLG) via metalorganic chemical vapor deposition (MOCVD) is investigated. The length, diameter, and number density of NWs, as well as areal coverage of parasitic islands, are quantified as functions of key growth variables including growth temperature, V/III ratio, and total flow rate of metalorganic and hydride precursors. A compromise between self-assembly of high aspect ratio NWs comprising high number density arrays and simultaneous minimization of parasitic growth coverage is reached under a selected set of optimal growth conditions. Exploration of NW crystal structures formed under various growth conditions reveals that a characteristic polytypic and disordered lattice is invariant within the explored parameter space. A growth evolution study reveals a gradual reduction in both axial and radial growth rates within the explored timeframe for the optimal growth conditions, which is attributed to a supply-limited competitive growth regime. Two strategies are introduced for further growth optimization. Firstly, it is shown that the absence of a pre-growth in situ arsine surface treatment results in a reduction of parasitic island coverage by factor of ∼0.62, while NW aspect ratio and number densities are simultaneously enhanced. Secondly, the use of a two-step flow-modulated growth procedure allows for realization of dense fields of high aspect ratio InAs NWs. As a result of the applied studies and optimization of the growth parameter space, the highest reported axial growth rate of 840 nm min −1 and NW number density of ∼8.3 × 10 8 cm −2 for vdWE of high aspect ratio (>80) InAs NW arrays on graphitic surfaces are achieved. This work is intended to serve as a guide for vdWE of self-assembled III–V semiconductor NWs such as In-based ternary and quaternary alloys on functional two-dimensional monolayer materials, toward device applications in flexible optoelectronics and tandem-junction photovoltaics. 
    more » « less
  4. Immediately after the demonstration of the high-quality electronic properties in various two dimensional (2D) van der Waals (vdW) crystals fabricated with mechanical exfoliation, many methods have been reported to explore and control large scale fabrications. Comparing with recent advancements in fabricating 2D atomic layered crystals, large scale production of one dimensional (1D) nanowires with thickness approaching molecular or atomic level still remains stagnant. Here, we demonstrate the high yield production of a 1D vdW material, semiconducting Ta2Pd3Se8 nanowires, by means of liquid-phase exfoliation. The thinnest nanowire we have readily achieved is around 1 nm, corresponding to a bundle of one or two molecular ribbons. Transmission electron microscopy (TEM) and transport measurements reveal the as-fabricated Ta2Pd3Se8 nanowires exhibit unexpected high crystallinity and chemical stability. Our low-frequency Raman spectroscopy reveals clear evidence of the existing of weak inter-ribbon bindings. The fabricated nanowire transistors exhibit high switching performance and promising applications for photodetectors. 
    more » « less
  5. Abstract

    Two‐dimensional transition metal dichalcogenides (TMDs)/graphene van der Waals (vdW) heterostructures integrate the superior light–solid interaction in TMDs and charge mobility in graphene, and therefore are promising for surface‐enhanced Raman spectroscopy (SERS). Herein, a novel TMD (MoS2and WS2) nanodome/graphene vdW heterostructure SERS substrate, on which an extraordinary SERS sensitivity is achieved, is reported. Using fluorescent Rhodamine 6G (R6G) as probe molecules, the SERS sensitivity is in the range of 10−11to 10−12mon the TMD nanodomes/graphene vdW heterostructure substrates using 532 nm Raman excitation, which is comparable to the best sensitivity reported so far using plasmonic metal nanostructures/graphene SERS substrates, and is more than three orders of magnitude higher than that on single‐layer TMD and graphene substrates. Density functional theory simulation reveals enhanced electric dipole moments and dipole–dipole interaction at the TMD/graphene vdW interface, yielding an effective means to facilitate an external electrostatic perturbation on the graphene surface and charge transfer. This not only promotes chemical enhancement on SERS, but also enables electromagnetic enhancement of SERS through the excitation of localized surface plasmonic resonance on the TMD nanodomes. This TMD nanodome/graphene vdW heterostructure is therefore promising for commercial applications in high‐performance optoelectronics and sensing.

     
    more » « less