skip to main content


Title: Degradable sugar-based magnetic hybrid nanoparticles for recovery of crude oil from aqueous environments
In this work, we designed and fabricated a nanoscopic sugar-based magnetic hybrid material that is capable of tackling environmental pollution posed by marine oil spills, while minimizing potential secondary problems that may occur from microplastic contamination. These readily-defined magnetic nanocomposites were constructed through co-assembly of magnetic iron oxide nanoparticles (MIONs) and a degradable amphiphilic polymer, poly(ethylene glycol)- b -dopamine-functionalized poly(ethyl propargyl glucose carbonate)- b -poly(ethyl glucose carbonate), PEG- b -PGC[(EPC-MPA)- co -(EPC-DOPA)]- b -PGC(EC), driven by supramolecular co-assembly in water with enhanced interactions provided via complexation between dopamine and MIONs. The composite nanoscopic assemblies possessed a pseudo -micellar structure, with MIONs trapped within the polymer framework. The triblock terpolymer was synthesized by sequential ring-opening polymerizations (ROPs) of two glucose-derived carbonate monomers, initiated by a PEG macroinitiator. Dopamine anchoring groups were subsequently installed by first introducing carboxylic acid groups using a thiol–yne click reaction, followed by amidation with dopamine. The resulting amphiphilic triblock terpolymers and MIONs were co-assembled to afford hybrid nanocomposites using solvent exchange processes from organic solvent to water. In combination with hydrophobic interactions, the linkage between dopamine and iron oxide stabilized the overall nanoscopic structure to allow for the establishment of a uniform globular morphology, whereas attempts at co-assembly with the triblock terpolymer precursor, lacking dopamine side chains, failed to afford well-defined nanostructures. The magnetic hybrid nanoparticles demonstrated high oil sorption capacities, ca. 8 times their initial dry weight, attributed, in part, to large surface areas leading to effective contact between the nanomaterials and hydrocarbon pollutants. Moreover, the naturally-derived polymer framework undergoes hydrolytic degradation to break down into byproducts that include glucose, ethanol and dopamine if not recovered after deployment, alleviating concerns of potential microplastic generation and persistence.  more » « less
Award ID(s):
1905818 1629094 1610311
NSF-PAR ID:
10155010
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Polymer Chemistry
ISSN:
1759-9954
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A series of glucose‐based degradable superabsorbent hydrogels with potential to tackle issues associated with sustainability, flooding, and drought has been designed and fabricated. These hydrophilic networks were constructed through integrating glucose as a primary building block –into cyclic oligomers and block polymers, which were combined into mechanically‐interlocked slide‐ring crosslinked materials. Crosslinking of slide ring α‐cyclodextrin/poly(ethylene glycol)‐type polyrotaxanes with acid‐functionalized ABA triblock copolymers comprised of mercaptopropionic acid‐functionalized poly(glucose carbonate (ethyl propargyl carbonate))‐b‐poly(ethylene glycol)‐b‐mercaptopropionic acid‐functionalized poly(glucose carbonate (ethyl propargyl carbonate)), afforded degradable superabsorbent hydrogels through establishment of chemically‐labile ester linkages, in addition to glycosidic and carbonate groups of the polymer precursors. With an emphasis on development of fundamental synthetic design strategies to achieve high‐performance superabsorbent hydrogels that could behave as robust materials, which are derived from natural components and exhibit hydrolytic degradability, effort went into optimization of the composition, structure, and topology leading to water uptake capacities >30× by mass. Investigations of composition‐structure‐topology‐morphology effects on properties as a function of variations of PEG main chain length, degree of α‐cyclodextrin coverage, and concentration of pre‐gel solution, indicated that the slide‐ring polymer and triblock copolymer networks feature high water uptake, tunable mechanical properties, and sustainability with construction from renewable natural products and in‐built degradability.

     
    more » « less
  2. ABSTRACT

    Rotational and oscillatory shear rheometry were used to quantify the flow behavior under minimal and significant solvent evaporation conditions for polymer solutions used to fabricate isoporous asymmetric membranes by the self‐assembly and non‐solvent induced phase separation (SNIPS) method. Three different A‐B‐C triblock terpolymer chemistries of similar molar mass were evaluated: polyisoprene‐b‐polystyrene‐b‐poly(4‐vinylpyridine) (ISV); polyisoprene‐b‐polystyrene‐b‐poly(N,N‐dimethylacrylamide) (ISD); and polyisoprene‐b‐polystyrene‐b‐poly(tert‐butyl methacrylate) (ISB). Solvent evaporation resulted in the formation of a viscoelastic film typical of asymmetric membranes. Solution viscosity and film viscoelasticity were strongly dependent on the chemical structure of the triblock terpolymer molecules. A hierarchical magnitude (ISV > ISB > ISD) was observed for both properties, with ISV solutions displaying the greatest solution viscosity, fastest film strength development, and greatest strength magnitude. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2019,136, 47038.

     
    more » « less
  3. null (Ed.)
    Recent developments in the field of polymer vesicles, i.e. polymersomes, have demonstrated that disrupting the equilibrium conditions of the milieu could lead to shape transformation into stable non-spherical morphologies, bringing on-demand shape control to reality and bearing great promise for cell mimicry and a variety of biomedical applications. Here, we studied the self-assembly behavior of glassy amphiphilic triblock copolymers, poly(ethylene glycol)- block -polystyrene- stat -poly(coumarin methacrylate)- block -poly(ethylene glycol) (PEG- b -P(S- stat -CMA)- b -PEG), and their response to various stimuli. By changing the respective molecular weights of both the hydrophobic P(S- stat -CMA) and the hydrophilic PEG blocks, we varied the hydrophobic volume fraction thereby accessing a range of morphologies from spherical and worm-like micelles, as well as polymersomes. For the latter, we observed that slow osmotic pressure changes induced by dialysis led to a decrease in size while rapid osmotic pressure changes by addition of a PEG fusogen led to morphological transformations into rod-like and tubular polymersomes. We also found out that chemically crosslinking the vesicles before inducing osmotic pressure changes led to the vesicles exhibiting hypotonic shock, atypical for glassy polymersomes. We believe that this approach combining the robustness of triblock copolymers and light-based transformations will help expand the toolbox to design ever more complex biomimetic constructs. 
    more » « less
  4. Abstract

    Materials combining an asymmetric pore structure with mesopores everywhere enable high surface area accessibility and fast transport, making them attractive for e.g., energy conversion and storage applications. Block copolymer (BCP)/inorganic precursor co‐assembly combined with non‐solvent induced phase separation (NIPS) provides a route to materials in which a mesoporous top surface layer merges into an asymmetric support with graded porosity along the film normal and mesopores throughout. Here, the co‐assembly and non‐solvent‐induced phase separation (CNIPS) of poly(isoprene)‐b‐poly(styrene)‐b‐poly(4‐vinylpyridine) (ISV) triblock terpolymer and titanium dioxide (TiO2) sol‐gel nanoparticlesare reported. Heat‐treatment in air results in free‐standing asymmetric porous TiO2. Further thermal processing in ammonia results in free‐standing asymmetric porous titanium nitride (TiN). processing changes alter structural membrane characteristics is demonstrated. Changing the CNIPS evaporation time results in various membrane cross‐sections ( finger‐like to sponge‐like). Oxide and nitride material composition, crystallinity, and porosity are tuned by varying thermal processing conditions. Finally, thermal processing condition effects are probed on phase‐pure asymmetric nitride membrane behavior using cyclic voltammetry to elucidate their influence, e.g., on specific capacitance. Results provide further insights into improving asymmetric and porous materials for applications including energy conversion and storage, separation, and catalysis and motivate a further expansion of CNIPS to other (in)organic materials.

     
    more » « less
  5. Abstract

    Aqueous self‐assembly of amphiphilic block copolymers form diverse nanostructured morphologies depending on block volume fraction and solvophilicity. Stimuli‐responsive motifs have been combined with self‐assembled micelles to afford spatiotemporal, on‐demand encapsulation and payload release. However, the role of modular polymer architecture (i.e., bottlebrushes) in stimuli‐responsive aqueous self‐assembly is not fully understood. The synthesis, aqueous self‐assembly, and photoirradiation of photolabile, amphiphilic bottlebrush block copolymers is presented herein. Specifically, the efficient photoscission ofo‐nitrobenzene motifs at the junction of a poly(norborneneo‐nitrobenzene polystyrene)‐block‐poly(norbornene polyethylene glycol) diblock bottlebrush side chain and backbone cleaved away hydrophobic polystyrene side chains and artificially increased the volume fraction of poly(ethylene glycol) (fPEG). In doing so, self‐assembled micelles readily degrade to micelle‐to‐micelle and micelle‐to‐aggregate structures after photoirradiation. Finally, this bottlebrush micelle system is used to demonstrate the efficient encapsulation and stimuli‐responsive release of Nile Red that is monitored by fluorescence spectroscopy and dynamic light scattering. The contribution of this work expands the utility of amphiphilic bottlebrush systems as highly efficient and responsive, hierarchically assembled nanomaterials.

     
    more » « less