The morphology of self-assembled block copolymer aggregates is highly dependent on the relative volume fraction of the hydrophobic block. Thus, a dramatic change in the volume fraction of the hydrophobic block can elicit on-demand morphological transitions. Herein, a novel hydrophobic monomer containing a photolabile nitrobenzyl (Nb) protecting group was synthesized and incorporated into a block copolymer with poly(ethylene glycol) methacrylate. This motif allows for the hydrophobic volume fraction of the amphiphilic block copolymer to be dramatically reduced in situ to induce a morphological transition upon irradiation with UV light. Two amphiphilic block copolymers, Nb 94 and Nb 176, with hydrophobic weight fractions of 80% and 86%, respectively, were synthesized and their self-assembly in water studied. Nb 94 assembled into vesicles with R h = 235 nm and underwent a morphological transition after 21 minutes of UV irradiation to spherical micelles with R h = 27 nm, determined by dynamic light scattering and confirmed by transmission electron microscopy. At intermediate irradiation times (14–20 min), Nb 94 vesicles swelled to a larger size, but underwent a morphological transition over the course of hours or days, depending on the exact irradiation time. Nb 176 assembled into large compound vesicles with a hydrodynamic radiusmore »
Shape-transformation of polymersomes from glassy and crosslinkable ABA triblock copolymers
Recent developments in the field of polymer vesicles, i.e. polymersomes, have demonstrated that disrupting the equilibrium conditions of the milieu could lead to shape transformation into stable non-spherical morphologies, bringing on-demand shape control to reality and bearing great promise for cell mimicry and a variety of biomedical applications. Here, we studied the self-assembly behavior of glassy amphiphilic triblock copolymers, poly(ethylene glycol)- block -polystyrene- stat -poly(coumarin methacrylate)- block -poly(ethylene glycol) (PEG- b -P(S- stat -CMA)- b -PEG), and their response to various stimuli. By changing the respective molecular weights of both the hydrophobic P(S- stat -CMA) and the hydrophilic PEG blocks, we varied the hydrophobic volume fraction thereby accessing a range of morphologies from spherical and worm-like micelles, as well as polymersomes. For the latter, we observed that slow osmotic pressure changes induced by dialysis led to a decrease in size while rapid osmotic pressure changes by addition of a PEG fusogen led to morphological transformations into rod-like and tubular polymersomes. We also found out that chemically crosslinking the vesicles before inducing osmotic pressure changes led to the vesicles exhibiting hypotonic shock, atypical for glassy polymersomes. We believe that this approach combining the robustness of triblock copolymers and light-based transformations will more »
- Publication Date:
- NSF-PAR ID:
- 10220780
- Journal Name:
- Journal of Materials Chemistry B
- Volume:
- 8
- Issue:
- 38
- Page Range or eLocation-ID:
- 8914 to 8924
- ISSN:
- 2050-750X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Herein, we present the direct modification of glucose, an abundant and inexpensive sugar molecule, to produce new sustainable and functional polymers. Glucose-6-acrylate-1,2,3,4-tetraacetate (GATA) has been synthesized and shown to provide a useful glassy component for developing an innovative family of elastomeric and adhesive materials. A series of diblock and triblock copolymers of GATA and n -butyl acrylate (n-BA) were created via Reversible Addition–Fragmentation Chain Transfer (RAFT) polymerization. Initially, poly(GATA)- b -poly(n-BA) copolymers were prepared using 4-cyano-4-[(ethylsulfanylthiocarbonyl)sulfanyl] pentanoic acid (CEP) as a chain transfer agent (CTA). These diblock copolymers demonstrated decomposition temperatures of 275 °C or greater and two glass transition temperatures ( T g ) around −45 °C and 100 °C corresponding to the PnBA and PGATA domains, respectively, as measured by differential scanning calorimetry (DSC). Triblock copolymers of GATA and n-BA, with moderate dispersities ( Đ = 1.15–1.29), were successfully synthesized when S , S -dibenzyl trithiocarbonate (DTC) was employed as the CTA. Poly(GATA)- b -poly(nBA)- b -poly(GATA) copolymers with 14–58 wt% GATA were prepared and demonstrated excellent thermomechanical properties ( T d ≥ 279 °C). Two well-separated glass transitions near the values for homopolymers of n-BA and GATA (∼−45 °C and ∼100 °C, respectively) were measured by DSC.more »
-
In this work, we designed and fabricated a nanoscopic sugar-based magnetic hybrid material that is capable of tackling environmental pollution posed by marine oil spills, while minimizing potential secondary problems that may occur from microplastic contamination. These readily-defined magnetic nanocomposites were constructed through co-assembly of magnetic iron oxide nanoparticles (MIONs) and a degradable amphiphilic polymer, poly(ethylene glycol)- b -dopamine-functionalized poly(ethyl propargyl glucose carbonate)- b -poly(ethyl glucose carbonate), PEG- b -PGC[(EPC-MPA)- co -(EPC-DOPA)]- b -PGC(EC), driven by supramolecular co-assembly in water with enhanced interactions provided via complexation between dopamine and MIONs. The composite nanoscopic assemblies possessed a pseudo -micellar structure, with MIONs trapped within the polymer framework. The triblock terpolymer was synthesized by sequential ring-opening polymerizations (ROPs) of two glucose-derived carbonate monomers, initiated by a PEG macroinitiator. Dopamine anchoring groups were subsequently installed by first introducing carboxylic acid groups using a thiol–yne click reaction, followed by amidation with dopamine. The resulting amphiphilic triblock terpolymers and MIONs were co-assembled to afford hybrid nanocomposites using solvent exchange processes from organic solvent to water. In combination with hydrophobic interactions, the linkage between dopamine and iron oxide stabilized the overall nanoscopic structure to allow for the establishment of a uniform globular morphology, whereas attempts atmore »
-
Obtaining insights into the adsorption and assembly of polyelectrolytes on chemically variable calcium silicate hydrate (C-S-H) surfaces at the atomic scale has been a longstanding challenge in the chemistry of sustainable building materials and mineral–polymer interactions. Specifically, polycarboxylate ethers (PCEs) based on acrylate and poly(ethylene glycol) acrylate co-monomers are widely used to engineer the fluidity and hydration of cement and play an important role in the search for building materials with a lower carbon footprint. We report the first systematic study of PCE interactions with C-S-H surfaces at the molecular level using simulations at single molecule coverage and comparisons to experimental data. The mechanism of adsorption of the ionic polymers is a two-step process with initial cation adsorption that reverses the mineral surface charge, followed by adsorption of the polymer backbone through ion pairing. Free energies of binding are tunable in a wide range of 0 to −5 kcal mol −1 acrylate monomer. Polymer attraction increases for higher calcium-to-silicate ratio of the mineral and higher pH value in solution, and varies significantly with PCE composition. Thereby, successive negatively charged carboxylate groups along the backbone induce conformation strain and local detachment from the surface. Polyethylene glycol (PEG) side chains in themore »
-
Bicontinuous nanospheres (BCNs) are underutilized self-assembled nanostructures capable of simultaneous delivery of both hydrophilic and hydrophobic payloads. Here, we demonstrate that BCNs assembled from poly(ethylene glycol)- block -poly(propylene sulfide) (PEG- b -PPS), an oxidation-sensitive copolymer, are stably retained within cell lysosomes following endocytosis, resisting degradation and payload release for days until externally triggered. The oxygen scavenging properties and enhanced stability of the bicontinuous PEG- b -PPS nanoarchitecture significantly protected cells from typically cytotoxic application of pro-apoptotic photo-oxidizer pheophorbide A and chemotherapeutic camptothecin. The photo-oxidation triggered transition from a bicontinuous to micellar morphology overcame this stability, allowing on-demand cytosolic delivery of camptothecin for enhanced control over off–on cytotoxicity. These results indicate that inducible transitions in the nanostructure morphology can influence intracellular stability and toxicity of self-assembled nanotherapeutics.