skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices
Two-dimensional materials from layered van der Waals (vdW) crystals hold great promise for electronic, optoelectronic, and quantum devices, but technological implementation will be hampered by the lack of high-throughput techniques for exfoliating single-crystal monolayers with sufficient size and high quality. Here, we report a facile method to disassemble vdW single crystals layer by layer into monolayers with near-unity yield and with dimensions limited only by bulk crystal sizes. The macroscopic monolayers are comparable in quality to microscopic monolayers from conventional Scotch tape exfoliation. The monolayers can be assembled into macroscopic artificial structures, including transition metal dichalcogenide multilayers with broken inversion symmetry and substantially enhanced nonlinear optical response. This approach takes us one step closer to mass production of macroscopic monolayers and bulk-like artificial materials with controllable properties.  more » « less
Award ID(s):
1809680
PAR ID:
10155494
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Science
Volume:
367
Issue:
6480
ISSN:
0036-8075
Page Range / eLocation ID:
903 to 906
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Properties arising from ordered periodic mesostructures are often obscured by small, randomly oriented domains and grain boundaries. Bulk macroscopic single crystals with mesoscale periodicity are needed to establish fundamental structure–property correlations for materials ordered at this length scale (10–100 nm). A solvent‐evaporation‐induced crystallization method providing access to large (millimeter to centimeter) single‐crystal mesostructures, specifically bicontinuous gyroids, in thick films (>100 µm) derived from block copolymers is reported. After in‐depth crystallographic characterization of single‐crystal block copolymer–preceramic nanocomposite films, the structures are converted into mesoporous ceramic monoliths, with retention of mesoscale crystallinity. When fractured, these monoliths display single‐crystal‐like cleavage along mesoscale facets. The method can prepare macroscopic bulk single crystals with other block copolymer systems, suggesting that the method is broadly applicable to block copolymer materials assembled by solvent evaporation. It is expected that such bulk single crystals will enable fundamental understanding and control of emergent mesostructure‐based properties in block‐copolymer‐directed metal, semiconductor, and superconductor materials. 
    more » « less
  2. Phonons are important lattice vibrations that affect the thermal, electronic, and optical properties of materials. In this work, we studied infrared phonon resonance in a prototype van der Waals (vdW) material—hexagonal boron nitride (hBN)—with the thickness ranging from monolayers to bulk, especially on ultra-thin crystals with atomic layers smaller than 20. Our combined experimental and modeling results show a systematic increase in the intensity of in-plane phonon resonance at the increasing number of layers in hBN, with a sensitivity down to one atomic layer. While the thickness-dependence of the phonon resonance reveals the antenna nature of our nanoscope, the linear thickness-scaling of the phonon polariton wavelength indicates the preservation of electromagnetic hyperbolicity in ultra-thin hBN layers. Our conclusions should be generic for fundamental resonances in vdW materials and heterostructures where the number of constituent layers can be conveniently controlled. The thickness-dependent phonon resonance and phonon polaritons revealed in our work also suggest vdW engineering opportunities for desired thermal and nanophotonic functionalities. 
    more » « less
  3. Abstract Boron nitride nanotubes (BNNTs) have attracted attention for their predicted extraordinary properties; yet, challenges in synthesis and processing have stifled progress on macroscopic materials. Recent advances have led to the production of highly pure BNNTs. Here we report that neat BNNTs dissolve in chlorosulfonic acid (CSA) and form birefringent liquid crystal domains at concentrations above 170 ppmw. These tactoidal domains merge into millimeter-sized regions upon light sonication in capillaries. Cryogenic electron microscopy directly shows nematic alignment of BNNTs in solution. BNNT liquid crystals can be processed into aligned films and extruded into neat BNNT fibers. This study of nematic liquid crystals of BNNTs demonstrates their ability to form macroscopic materials to be used in high-performance applications. 
    more » « less
  4. Nanowires of layered van der Waals (vdW) crystals are of interest due to structural characteristics and emerging properties that have no equivalent in conventional 3D crystalline nanostructures. Here, vapor-liquid-solid growth, optoelectronics, and photonics of GaS vdW nanowires are studied. Electron microscopy and diffraction demonstrate the formation of high-quality layered nanostructures with different vdW layer orientation. GaS nanowires with vdW stacking perpendicular to the wire axis have ribbon-like morphologies with lengths up to 100 micrometers and uniform width. Wires with axial layer stacking show tapered morphologies and a corrugated surface due to twinning between successive few-layer GaS sheets. Layered GaS nanowires are excellent wide-bandgap optoelectronic materials with Eg = 2.65 eV determined by single-nanowire absorption measurements. Nanometer-scale spectroscopy on individual nanowires shows intense blue band-edge luminescence along with longer wavelength emissions due to transitions between gap states, and photonic properties such as interference of confined waveguide modes propagating within the nanowires. The combined results show promise for applications in electronics, optoelectronics and photonics, as well as photo- or electrocatalysis owing to a high density of reactive edge sites, and intercalation-type energy storage benefitting from facile access to the interlayer vdW gaps. 
    more » « less
  5. Magnetic tunnel junctions (MTJs) with conventional bulk ferromagnets separated by a nonmagnetic insulating layer are key building blocks in spintronics for magnetic sensors and memory. A radically different approach of using atomically-thin van der Waals (vdW) materials in MTJs is expected to boost their figure of merit, the tunneling magnetoresistance (TMR), while relaxing the lattice-matching requirements from the epitaxial growth and supporting high-quality integration of dissimilar materials with atomically-sharp interfaces. We report TMR up to 192% at 10 K in all-vdW Fe3GeTe2/GaSe/Fe3GeTe2 MTJs. Remarkably, instead of the usual insulating spacer, this large TMR is realized with a vdW semiconductor GaSe. Integration of semiconductors into the MTJs offers energy-band-tunability, bias dependence, magnetic proximity effects, and spin-dependent optical-selection rules. We demonstrate that not only the magnitude of the TMR is tuned by the semiconductor thickness but also the TMR sign can be reversed by varying the bias voltages, enabling modulation of highly spin-polarized carriers in vdW semiconductors. 
    more » « less