Heat dissipation is a major limitation of high‐performance electronics. This is especially important in emerging nanoelectronic devices consisting of ultra‐thin layers, heterostructures, and interfaces, where enhancement in thermal transport is highly desired. Here, ultra‐high interfacial thermal conductance in encapsulated van der Waals (vdW) heterostructures with single‐layer transition metal dichalcogenides MX2(MoS2, WSe2, WS2) sandwiched between two hexagonal boron nitride (hBN) layers is reported. Through Raman spectroscopic measurements of suspended and substrate‐supported hBN/MX2/hBN heterostructures with varying laser power and temperature, the out‐of‐plane interfacial thermal conductance in the vertical stack is calibrated. The measured interfacial thermal conductance between MX2and hBN reaches 74 ± 25 MW m−2K−1, which is at least ten times higher than the interfacial thermal conductance of MX2in non‐encapsulation structures. Molecular dynamics (MD) calculations verify and explain the experimental results, suggesting a full encapsulation by hBN layers is accounting for the high interfacial conductance. This ultra‐high interfacial thermal conductance is attributed to the double heat transfer pathways and the clean and tight vdW interface between two crystalline 2D materials. The findings in this study reveal new thermal transport mechanisms in hBN/MX2/hBN structures and shed light on building novel hBN‐encapsulated nanoelectronic devices with enhanced thermal management.
- Award ID(s):
- 2005194
- PAR ID:
- 10380552
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 132
- Issue:
- 13
- ISSN:
- 0021-8979
- Page Range / eLocation ID:
- 134302
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Optical manipulation of coherent phonon frequency in two-dimensional (2D) materials could advance the development of ultrafast phononics in atomic-thin platforms. However, conventional approaches for such control are limited to doping, strain, structural or thermal engineering. Here, we report the experimental observation of strong laser-polarization control of coherent phonon frequency through time-resolved pump-probe spectroscopic study of van der Waals (vdW) materials Fe 3 GeTe 2 . When the polarization of the pumping laser with tilted incidence is swept between in-plane and out-of-plane orientations, the frequencies of excited phonons can be monotonically tuned by as large as 3% (~100 GHz). Our first-principles calculations suggest the strong planar and vertical inter-atomic interaction asymmetry in layered materials accounts for the observed polarization-dependent phonon frequencies, as in-plane/out-of-plane polarization modifies the restoring force of the lattice vibration differently. Our work provides insightful understanding of the coherent phonon dynamics in layered vdW materials and opens up new avenues to optically manipulating coherent phonons.more » « less
-
Abstract Element isotopes are characterized by distinct atomic masses and nuclear spins, which can significantly influence material properties. Notably, however, isotopes in natural materials are homogenously distributed in space. Here, we propose a method to configure material properties by repositioning isotopes in engineered van der Waals (vdW) isotopic heterostructures. We showcase the properties of hexagonal boron nitride (hBN) isotopic heterostructures in engineering confined photon-lattice waves—hyperbolic phonon polaritons. By varying the composition, stacking order, and thicknesses of h10BN and h11BN building blocks, hyperbolic phonon polaritons can be engineered into a variety of energy-momentum dispersions. These confined and tailored polaritons are promising for various nanophotonic and thermal functionalities. Due to the universality and importance of isotopes, our vdW isotope heterostructuring method can be applied to engineer the properties of a broad range of materials.
-
Abstract Phonon polaritons in van der Waals materials reveal significant confinement accompanied with long propagation length: important virtues for tasks pertaining to the control of light and energy flow at the nanoscale. While previous studies of phonon polaritons have relied on relatively thick samples, here reported is the first observation of surface phonon polaritons in single atomic layers and bilayers of hexagonal boron nitride (hBN). Using antenna‐based near‐field microscopy, propagating surface phonon polaritons in mono‐ and bilayer hBN microcrystals are imaged. Phonon polaritons in monolayer hBN are confined in a volume about one million times smaller than the free‐space photons. Both the polariton dispersion and their wavelength–thickness scaling law are altered compared to those of hBN bulk counterparts. These changes are attributed to phonon hardening in monolayer‐thick crystals. The data reported here have bearing on applications of polaritons in metasurfaces and ultrathin optical elements.
-
We demonstrate a technique to strain two-dimensional hexagonal boron nitride (hBN) and graphene by depositing stressed thin films to encapsulate exfoliated flakes. We choose optically transparent stressors to be able to analyze strain in 2D flakes through Raman spectroscopy. Combining thickness-dependent analyses of Raman peak shifts with atomistic simulations of hBN and graphene, we can explore layer-by-layer strain transfer in these materials. hBN and graphene show strain transfer into the top four and two layers of multilayer flakes, respectively. hBN has been widely used as a protective capping layer for other 2D materials, while graphene has been used as a top gate layer in various applications. Findings of this work suggest that straining 2D heterostructures with evaporated stressed thin films through the hBN capping layer or graphene top contact is possible since strain is not limited to a single layer.more » « less