skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Scientific Meetings for All
Two organizations found ways to be more intentional about encouraging participation by a diverse spectrum of attendees at scientific meetings—the scientific community can learn from their experiences.  more » « less
Award ID(s):
1812997
PAR ID:
10155505
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Eos
Volume:
101
ISSN:
2324-9250
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present SciDMT, an enhanced and expanded corpus for scientific mention detection, offering a significant advancement over existing related resources. SciDMT contains annotated scientific documents for datasets (D), methods (M), and tasks (T). The corpus consists of two components: 1) the SciDMT main corpus, which includes 48 thousand scientific articles with over 1.8 million weakly annotated mention annotations in the format of in-text span, and 2) an evaluation set, which comprises 100 scientific articles manually annotated for evaluation purposes. To the best of our knowledge, SciDMT is the largest corpus for scientific entity mention detection. The corpus’s scale and diversity are instrumental in developing and refining models for tasks such as indexing scientific papers, enhancing information retrieval, and improving the accessibility of scientific knowledge. We demonstrate the corpus’s utility through experiments with advanced deep learning architectures like SciBERT and GPT-3.5. Our findings establish performance baselines and highlight unresolved challenges in scientific mention detection. SciDMT serves as a robust benchmark for the research community, encouraging the development of innovative models to further the field of scientific information extraction 
    more » « less
  2. Automation transformed various aspects of our human civilization, revolutionizing industries and streamlining processes. In the domain of scientific inquiry, automated approaches emerged as powerful tools, holding promise for accelerating discovery, enhancing reproducibility, and overcoming the traditional impediments to scientific progress. This article evaluates the scope of automation within scientific practice and assesses recent approaches. Furthermore, it discusses different perspectives to the following questions: where do the greatest opportunities lie for automation in scientific practice?; What are the current bottlenecks of automating scientific practice?; and What are significant ethical and practical consequences of automating scientific practice? By discussing the motivations behind automated science, analyzing the hurdles encountered, and examining its implications, this article invites researchers, policymakers, and stakeholders to navigate the rapidly evolving frontier of automated scientific practice.

     
    more » « less
  3. Our technological, information-rich society thrives because of scientific thinking. However, a comprehensive theory of the development of scientific thinking remains elusive. Building on previous theoretical and empirical work in conceptual change, the role of credibility and plausibility in evaluating scientific evidence and claims, science engagement, active learning in STEM education, and the development of empirical thinking, we chart a pathway toward a comprehensive theory of the development of scientific thinking as an example of theory building in action. We detail the structural similarity and progressive transformation of our models and perspectives, highlighting factors for incorporation into a novel theory. This theory will focus on beneficial outcomes of a more collaborative scientific community and increasing scientific literacy through deeper science understanding for all people. 
    more » « less
  4. Holme, Thomas (Ed.)
    Reading and understanding scientific literature is an essential skill for any scientist to learn. While students’ scientific literacy can be improved by reading research articles, an article’s technical language and structure can hinder students’ understanding of the scientific material. Furthermore, many students struggle with interpreting graphs and other models of data commonly found in scientific literature. To introduce students to scientific literature and promote improved understanding of data and graphs, we developed a guided-inquiry activity adapted from a research article on snow chemistry and implemented it in a general chemistry laboratory course. Here, we describe how we adapted figures from the primary literature source and developed questions to scaffold the guided-inquiry activity. Results from semi-structured qualitative interviews suggest that students learn about snow chemistry processes and engage in scientific practices, including data analysis and interpretation, through this activity. This activity is applicable in other introductory science courses as educators can adapt most scientific articles into a guided-inquiry activity. 
    more » « less
  5. null (Ed.)
    Annotated primary scientific literature is a teaching and learning resource that provides scaffolding for undergraduate students acculturating to the authentic scientific practice of obtaining and evaluating information through the medium of primary scientific literature. Utilizing annotated primary scientific literature as an integrated pedagogical tool could enable more widespread use of primary scientific literature in undergraduate science classrooms with minimal disruption to existing syllabi. Research is ongoing to determine an optimal implementation protocol, with these preliminary iterations presented here serving as a first look at how students respond to annotated primary scientific literature. The undergraduate biology student participants in our study did not, in general, have an abundance of experience reading primary scientific literature; however, they found the annotations useful, especially for vocabulary and graph interpretation. We present here an implementation protocol for using annotated primary literature in the classroom that minimizes the use of valuable classroom time and requires no additional pedagogical training for instructors. 
    more » « less