While our world consistently presents complicated, interdisciplinary problems with STEM foundations, most pre-university curricula do not encourage drawing on multidisciplinary knowledge in the sciences and engineering to create solutions. We developed an instructional approach, Iterative Science and Engineering (ISE), that cycles through scientific investigation and engineering design and culminates in constructing a solution to a local environmental challenge. Next, we created, revised, and evaluated a six-week ISE curricular program, Invasive Insects, culminating in 6th–9th-grade students building traps to mitigate local invasive insect populations. Over three Design-Based Research (DBR) cycles, we gathered and analyzed identical pre and post-test data from 554 adolescents to address the research question: what three-dimensional (3D) science and engineering knowledge do adolescents demonstrate over three DBR cycles associated with a curricular program following the Iterative Science and Engineering instructional approach? Results document students’ significant statistical improvements, with differential outcomes in different cycles. For example, most students demonstrated significant learning of 3D science and engineering argument construction in all cycles—still, students only significantly improved engineering design when they performed guided reflection on their designs and physically built a second trap. Our results suggest that the development, refinement, and empirical evaluation of an ISE curricular program led to students’ design, building, evaluation, and sharing of their learning of mitigating local invasive insect populations. To address complex, interdisciplinary challenges, we must provide opportunities for fluid and iterative STEM learning through scientific investigation and engineering design cycles. 
                        more » 
                        « less   
                    
                            
                            Seeking a Comprehensive Theory About the Development of Scientific Thinking
                        
                    
    
            Our technological, information-rich society thrives because of scientific thinking. However, a comprehensive theory of the development of scientific thinking remains elusive. Building on previous theoretical and empirical work in conceptual change, the role of credibility and plausibility in evaluating scientific evidence and claims, science engagement, active learning in STEM education, and the development of empirical thinking, we chart a pathway toward a comprehensive theory of the development of scientific thinking as an example of theory building in action. We detail the structural similarity and progressive transformation of our models and perspectives, highlighting factors for incorporation into a novel theory. This theory will focus on beneficial outcomes of a more collaborative scientific community and increasing scientific literacy through deeper science understanding for all people. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10521223
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Educational Psychology Review
- Volume:
- 36
- Issue:
- 3
- ISSN:
- 1040-726X
- Page Range / eLocation ID:
- 72
- Subject(s) / Keyword(s):
- development of scientific thinking, scientific literacy, science expertise, scientific evaluation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Vergara, D; Jeronen, E (Ed.)Visual representations are essential to scientific research and teaching, playing a role in conceptual understanding, knowledge generation, and the communication of discovery and change. Undergraduate students are expected to interpret, use, and create visual representations so they can make their thinking explicit when engaging in discourse with the scientific community. Despite the importance of visualization in the biosciences, students often learn visualization skills in an ad hoc fashion without a clear framework. We used a mixed-methods sequential explanatory study design to explore and assess the pedagogical needs of undergraduate biology students (n = 53), instructors (n = 13), and teaching assistants (n = 8) in visual science communication education. Key themes were identified using inductive grounded theory methods. We found that extrinsic motivations, namely time, financial resources, and grading practices, contribute to a lack of guidance, support, and structure as well as ambiguous expectations and standards perceived by students and instructors. Biology and science visualization instructors cite visual communication assessments as a way of developing and evaluating students’ higher-order thinking skills in addition to their communication competencies. An output of this research, the development of a learning module, the Visual Science Communication Toolkit, is discussed along with design considerations for developing resources for visual science communication education.more » « less
- 
            Abstract There is considerable agreement among scientists, educators, and policymakers about the need to broaden participation in science, technology, engineering, and math (STEM) education. Yet, equity requires much more than increasing STEM access for marginalized groups of children. In this invited commentary, we raise two critical points for the field to continue to grapple with as we investigate ways to engage young minds in STEM learning. It is critical that research with young children focuses on the process of doing science, while appreciating that the process of scientific thinking and learning are culturally constructed and situated. Specifically, as researchers and educators, we must do better at contextualizing children's scientific thinking process as it unfolds in their daily lives—with their peers, families, and in their cultural communities. Specific studies highlighted throughout this essay seek to document and promote family, community, and teaching practices that are effective for supporting young children's learning and explorations in STEM across our increasingly diverse society. We propose opportunities for future researchers to focus their efforts, including the following: more multidisciplinary work that includes synthesis across disciplines and methodological traditions; more diverse samples and investigative teams, such that cultural insiders are full participants; more descriptive studies focusing on the everyday experiences in children's lives that promote the development of scientific thinking and practices; and practice‐informed research.more » « less
- 
            null (Ed.)Abstract The Earth's population will become more than 80% urban during this century. This threshold is often regarded as sufficient justification for pursuing urban ecology. However, pursuit has primarily focused on building empirical richness, and urban ecology theory is rarely discussed. The Baltimore Ecosystem Study (BES) has been grounded in theory since its inception and its two decades of data collection have stimulated progress toward comprehensive urban theory. Emerging urban ecology theory integrates biology, physical sciences, social sciences, and urban design, probes interdisciplinary frontiers while being founded on textbook disciplinary theories, and accommodates surprising empirical results. Theoretical growth in urban ecology has relied on refined frameworks, increased disciplinary scope, and longevity of interdisciplinary interactions. We describe the theories used by BES initially, and trace ongoing theoretical development that increasingly reflects the hybrid biological–physical–social nature of the Baltimore ecosystem. The specific mix of theories used in Baltimore likely will require modification when applied to other urban areas, but the developmental process, and the key results, will continue to benefit other urban social–ecological research projects.more » « less
- 
            Fostering creativity is vital for tackling 21st-century challenges, and education plays a key role in nurturing this skill. According to the associative theory, creativity involves connecting distant concepts in semantic memory. Here, we explore how semantic memory changes following an educational intervention intended to promote creativity. Specifically, we examine how a scientific education curriculum—Scientific Creativity in Practice (SCIP) program—impacts the semantic memory networks of 10–18-year-old students in a chemistry class (n = 176). Students in an Intervention group who received the SCIP intervention, and a Control group who did not, completed creative thinking tests, as well as verbal fluency tasks to estimate semantic networks in science-specific (chemistry) and domain-general (animal) categories. Results showed that the SCIP intervention enhanced performance on one test of scientific creative thinking but showed no significant difference on another. Using network science methods, we observed increased interconnectedness in both science-specific and domain-general categories, with lower path distances between concepts and reduced modularity. These traits define a ‘small-world’ network, balancing connections between closely related and remote concepts. Notably, the chemistry semantic network showed substantially more reorganization, consistent with the chemistry contents of the SCIP intervention. The findings suggest that semantic memory reorganization may be a cognitive mechanism underlying successful creativity interventions in science education.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    