skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Confrustion in Learning from Erroneous Examples: Does Type of Prompted Self-explanation Make a Difference?
Confrustion, a mix of confusion and frustration sometimes experienced while grappling with instructional materials, is not necessarily detrimental to learning. Prior research has shown that studying erroneous examples can increase students’ experiences of confrustion, while at the same time helping them learn and overcome their misconceptions. In the study reported in this paper, we examined students’ knowledge and misconceptions about decimal numbers before and after they interacted with an intelligent tutoring system presenting either erroneous examples targeting misconceptions (erroneous example condition) or practice problems targeting the same misconceptions (problem-solving condition). While students in both conditions significantly improved their performance from pretest to posttest, students in the problem-solving condition improved significantly more and experienced significantly less confrustion. When controlling for confrustion levels, there were no differences in performance. This study is interesting in that, unlike prior studies, the higher confrustion that resulted from studying erroneous examples was not associated with better learning outcomes; instead, it was associated with poorer learning. We propose several possible explanations for this different outcome and hypothesize that revisions to the explanation prompts to make them more expert-like may have also made them – and the erroneous examples that they targeted – less understandable and less effective. Whether prompted self-explanation options should be modeled after the shorter, less precise language students tend to use or the longer, more precise language of experts is an open question, and an important one both for understanding the mechanisms of self-explanation and for designing self-explanation options deployed in instructional materials.  more » « less
Award ID(s):
1661121 1661153
PAR ID:
10155532
Author(s) / Creator(s):
Date Published:
Journal Name:
S. Isotani et al. (Eds.): AIED 2019, LNAI 11625
Page Range / eLocation ID:
445-457
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Confrustion, a mix of confusion and frustration sometimes experienced while grappling with instructional materials, is not necessarily detrimental to learning. Prior research has shown that studying erroneous examples can increase students’ experiences of confrustion, while at the same time helping them learn and overcome their misconceptions. In the study reported in this paper, we examined students’ knowledge and misconceptions about decimal numbers before and after they interacted with an intelligent tutoring system presenting either erroneous examples targeting misconceptions (erroneous example condition) or practice problems targeting the same misconceptions (problem-solving condition). While students in both conditions significantly improved their performance from pretest to posttest, students in the problem-solving condition improved significantly more and experienced significantly less confrustion. When controlling for confrustion levels, there were no differences in performance. This study is interesting in that, unlike prior studies, the higher confrustion that resulted from studying erroneous examples was not associated with better learning outcomes; instead, it was associated with poorer learning. We propose several possible explanations for this different outcome and hypothesize that revisions to the explanation prompts to make them more expert-like may have also made them – and the erroneous examples that they targeted – less understandable and less effective. Whether prompted self-explanation options should be modeled after the shorter, less precise language students tend to use or the longer, more precise language of experts is an open question, and an important one both for understanding the mechanisms of self-explanation and for designing self-explanation options deployed in instructional materials. 
    more » « less
  2. This paper presents a comparison of two instructional strategies meant to help learners better comprehend code and learn programming concepts: reading code examples annotated with expert explanation (worked-out examples) versus scaffolded self-explanation of code examples using an automated system (Intelligent Tutoring System). A randomized controlled trial study was conducted with 90 university students who were assigned to either the control group (reading worked-out examples, a passive strategy) or the experimental group where participants were asked to self-explain and received help, if needed, in the form of questions from the tutoring system( scaffolded self-explanation, an interactive strategy). We found that students with low prior knowledge in the experimental condition had significantly higher learning gains than students with high prior knowledge. However, in the control condition, this distinction in learning outcomes based on prior knowledge was not observed. We also analyzed the effect of self-efficacy on learning gains and the nature of self-explanation. Low self-efficacy students learn almost twice as much in the interactive condition versus the passive condition although the difference was not significant probably because of low sample size. We also found that high self-efficacy students tend to provide more relational explanations whereas low self-efficacy students provide more multi-structural or line-by-line explanations. 
    more » « less
  3. de Vries, E. ; Ahn, J. ; Hod, Y. (Ed.)
    Prior research shows that self-explanation promotes understanding by helping learners connect new knowledge with prior knowledge. However, despite ample evidence supporting the effectiveness of self-explanation, an instructional design challenge emerges in how best to scaffold self-explanation. In particular, it is an open challenge to design self-explanation support that simultaneously facilitates performance and learning outcomes. Towards this goal, we designed anticipatory diagrammatic self-explanation, a novel form of self-explanation embedded in an Intelligent Tutoring System (ITS). In our ITS, anticipatory diagrammatic self-explanation scaffolds learners by providing visual representations to help learners predict an upcoming strategic step in algebra problem solving. A classroom experiment with 108 middle-school students found that anticipatory diagrammatic self-explanation helped students learn formal algebraic strategies and significantly improve their problem-solving performance. This study contributes to understanding of how self-explanation can be scaffolded to support learning and performance. 
    more » « less
  4. de Vries, E. ; Ahn, J. ; Y. Hod, Y. (Ed.)
    Prior research shows that self-explanation promotes understanding by helping learners connect new knowledge with prior knowledge. However, despite ample evidence supporting the effectiveness of self-explanation, an instructional design challenge emerges in how best to scaffold self-explanation. In particular, it is an open challenge to design self-explanation support that simultaneously facilitates performance and learning outcomes. Towards this goal, we designed anticipatory diagrammatic self-explanation, a novel form of self-explanation embedded in an Intelligent Tutoring System (ITS). In our ITS, anticipatory diagrammatic self-explanation scaffolds learners by providing visual representations to help learners predict an upcoming strategic step in algebra problem solving. A classroom experiment with 108 middle-school students found that anticipatory diagrammatic self-explanation helped students learn formal algebraic strategies and significantly improve their problem-solving performance. This study contributes to understanding of how self-explanation can be scaffolded to support learning and performance. 
    more » « less
  5. Culbertson, J. ; Perfors, A. ; Rabagliati, H. ; Ramenzoni, V. (Ed.)
    One pedagogical technique that promotes conceptual understanding in mathematics learners is self-explanation integrated with worked examples (e.g., Rittle-Johnson et al., 2017). In this work, we implemented self-explanations with worked examples (correct and erroneous) in a software-based Intelligent Tutoring System (ITS) for learning algebra. We developed an approach to eliciting self-explanations in which the ITS guided students to select explanations that were conceptually rich in nature. Students who used the ITS with self-explanations scored higher on a posttest that included items tapping both conceptual and procedural knowledge than did students who used a version of the ITS that included only traditional problem-solving practice. This study replicates previous findings that self-explanation and worked examples in an ITS can foster algebra learning (Booth et al., 2013). Further, this study extends prior work to show that guiding students towards conceptual explanations is beneficial. 
    more » « less