Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
There is an established gender gap in middle school math education, where female students report higher anxiety and lower engagement, which negatively impact their performance and even long-term career choices. This work investigates the role of digital learning games in addressing this issue by studying Decimal Point, a math game that teaches decimal numbers and operations to 5th and 6th graders. Through data from four published studies of Decimal Point, involving 624 students in total, the authors identified a consistent gender difference that was replicated across all studies – male students tended to do better at pretest, while female students tended to learn more from the game. In addition, female students were more careful in answering self-explanation questions, which significantly mediated the relationship between gender and learning gains in two out of four studies. These findings show that learning games can be an effective tool for bridging the gender gap in middle school math education, which in turn contributes to the development of more personalized and inclusive learning platforms.more » « less
-
Confrustion, a mix of confusion and frustration sometimes experienced while grappling with instructional materials, is not necessarily detrimental to learning. Prior research has shown that studying erroneous examples can increase students’ experiences of confrustion, while at the same time helping them learn and overcome their misconceptions. In the study reported in this paper, we examined students’ knowledge and misconceptions about decimal numbers before and after they interacted with an intelligent tutoring system presenting either erroneous examples targeting misconceptions (erroneous example condition) or practice problems targeting the same misconceptions (problem-solving condition). While students in both conditions significantly improved their performance from pretest to posttest, students in the problem-solving condition improved significantly more and experienced significantly less confrustion. When controlling for confrustion levels, there were no differences in performance. This study is interesting in that, unlike prior studies, the higher confrustion that resulted from studying erroneous examples was not associated with better learning outcomes; instead, it was associated with poorer learning. We propose several possible explanations for this different outcome and hypothesize that revisions to the explanation prompts to make them more expert-like may have also made them – and the erroneous examples that they targeted – less understandable and less effective. Whether prompted self-explanation options should be modeled after the shorter, less precise language students tend to use or the longer, more precise language of experts is an open question, and an important one both for understanding the mechanisms of self-explanation and for designing self-explanation options deployed in instructional materials.more » « less