skip to main content

Title: Effect of precursor stoichiometry on morphology, phase purity, and texture formation of hot filament CVD diamond films grown on Si (100) substrate
The effect of precursor stoichiometry is reported on morphology, phase purity, and texture formation of polycrystalline diamond films. The diamond films were deposited on 100-mm Si (100) substrates using hot filament chemical vapor deposition at substrate temperature 720–750 °C using a mixture of methane and hydrogen. The gas mixture was varied with methane concentrations 1.5% to 4.5%. Diamond film thickness and average grain size both increase with increasing methane concentration. Diamond quality was checked using surface and cross-section by ultraviolet micro-Raman spectroscopy. The data show consistent diamond properties across the surface of the film and along the cross-section. XRD pole figure analyses of the films show that 3.0% methane results in preferential orientation of diamond in the〈111〉direction, whereas films deposited with 4.5% methane showed texture along the〈220〉direction in addition to〈111〉which was tilted ~ 23° with respect to the surface normal.
Authors:
; ; ; ; ; ;
Award ID(s):
1810419
Publication Date:
NSF-PAR ID:
10155942
Journal Name:
Journal of Materials Science: Materials in Electronics
ISSN:
0957-4522
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A multistep deposition technique is developed to produce highly oriented diamond films by hot filament chemical vapor deposition (HFCVD) on Si (111) substrates. The orientation is produced by use of a thin, 5–20 nm, Ni interlayer. Annealing studies demonstrate diffusion of Ni into Si to form nickel silicides with crystal structure depending on temperature. The HFCVD diamond film with Ni interlayer results in reduced non-diamond carbon, low surface roughness, high diamond crystal quality, and increased texturing relative to growth on bare silicon wafers. X-ray diffraction results show that the diamond film grown with 10 nm Ni interlayer yielded 92.5% of the diamond grains oriented along the (110) crystal planes with ~ 2.5 µm thickness and large average grain size ~ 1.45 µm based on scanning electron microscopy. Texture is also observed to develop for ~ 300 nm thick diamond films with ~ 89.0% of the grains oriented along the (110) crystal plane direction. These results are significantly better than diamond grown on Si (111) without Ni layer with the same HFCVD conditions. The oriented growth of diamond film on Ni interlayers is explained by a proposed model wherein the nano-diamond seeds becoming oriented relative to the β1-Ni3Si that forms during the diamond nucleation period. The model also explains the silicidation and diamond growthmore »processes.

    Article Highlights

    High quality diamond film with minimum surface roughness and ~93% oriented grains along (110) crystallographic direction is grown on Si substrate using a thin 5 to 20 nm nickel layer.

    A detailed report on the formation of different phases of nickel silicide, its stability with different temperature, and its role for diamond film texturing at HFCVD growth condition is presented.

    A diamond growth model on Si substrate with Ni interlayer to grow high quality-oriented diamond film is established.

    « less
  2. In this paper, we investigate the effects of operational conditions on structural, electronic and electrochemical properties on molybdenum suboxides (MoO3-δ) thin films. The films are prepared using pulsed-laser deposition by varying the deposition temperature (Ts), laser fluence (Φ), the partial oxygen pressure (PO2) and annealing temperature (Ta). We find that three classes of samples are obtained with different degrees of stoichiometric deviation without post-treatment: (i) amorphous MoO3-δ (δ < 0.05) (ii) nearly-stoichiometric samples (δ ≈ 0) and (iii) suboxides MoO3-δ (δ > 0.05). The suboxide films 0.05 ≤ δ ≤ 0.25 deposited on Au/Ti/SiO2/flexible-Si substrates with appropriate processing conditions show high electrochemical performance as an anode layer for lithium planar microbatteries. In the realm of simple synthesis, the MoO3-δ film deposited at 450 °C under oxygen pressure of 13 Pa is a mixture of α-MoO3 and Mo8O23 phases (15:85). The electrochemical test of the 0.15MoO3-0.85Mo8O23 film shows a specific capacity of 484 µAh cm−2 µm−1 after 100 cycles of charge-discharge at a constant current of 0.5 A cm−2 in the potential range 3.0-0.05 V.
  3. The in situ metalorganic chemical vapor deposition (MOCVD) growth of Al 2 O 3 dielectrics on β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 films is investigated as a function of crystal orientations and Al compositions of β-(Al x Ga 1−x ) 2 O 3 films. The interface and film qualities of Al 2 O 3 dielectrics are evaluated by high-resolution x-ray diffraction and scanning transmission electron microscopy imaging, which indicate the growth of high-quality amorphous Al 2 O 3 dielectrics with abrupt interfaces on (010), (100), and [Formula: see text] oriented β-(Al x Ga 1−x ) 2 O 3 films. The surface stoichiometries of Al 2 O 3 deposited on all orientations of β-(Al x Ga 1−x ) 2 O 3 are found to be well maintained with a bandgap energy of 6.91 eV as evaluated by high-resolution x-ray photoelectron spectroscopy, which is consistent with the atomic layer deposited (ALD) Al 2 O 3 dielectrics. The evolution of band offsets at both in situ MOCVD and ex situ ALD deposited Al 2 O 3 /β-(Al x Ga 1−x ) 2 O 3 is determined as a function of Al composition, indicating the influence of themore »deposition method, orientation, and Al composition of β-(Al x Ga 1−x ) 2 O 3 films on resulting band alignments. Type II band alignments are determined at the MOCVD grown Al 2 O 3 /β-(Al x Ga 1−x ) 2 O 3 interfaces for the (010) and (100) orientations, whereas type I band alignments with relatively low conduction band offsets are observed along the [Formula: see text] orientation. The results from this study on MOCVD growth and band offsets of amorphous Al 2 O 3 deposited on differently oriented β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 films will potentially contribute to the design and fabrication of future high-performance β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 based transistors using MOCVD in situ deposited Al 2 O 3 as a gate dielectric.« less
  4. Abstract

    Silver thin films have wide-ranging applications in optical coatings and optoelectronic devices. However, their poor wettability to substrates such as glass often leads to an island growth mode, known as the Volmer-Weber mode. This study demonstrates a method that utilizes a low-energy ion beam treatment in conjunction with magnetron sputtering to fabricate continuous silver films as thin as 6 nm. A single-beam ion source generates low-energy soft ions to establish a nominal 1 nm seed silver layer, which significantly enhances the wettability of the subsequently deposited silver films, resulting in a continuous film of approximately 6 nm with a resistivity as low as 11.4 µΩ.cm. The transmittance spectra of these films were found to be comparable to simulated results, and the standard 100-grid tape test showed a marked improvement in adhesion to glass compared to silver films sputter-deposited without the ion beam treatment. High-resolution scanning electron microscopy images of the early growth stage indicate that the ion beam treatment promotes nucleation, while films without the ion beam treatment tend to form isolated islands. X-ray diffraction patterns indicate that the (111) crystallization is suppressed by the soft ion beam treatment, while growth of large crystals with (200) orientation is strengthened.more »This method is a promising approach for the fabrication of silver thin films with improved properties for use in optical coatings and optoelectronics.

    « less
  5. A single beam plasma source was used to deposit hydrogenated amorphous carbon (a-C:H) coatings at room temperature. Using methane source gas, a-C:H coatings were deposited at different radio frequency (RF) power to fabricate transparent and durable coatings. The film deposition rate was almost linearly proportional to the ion source power. Hydrogenated amorphous carbon films of ~100 nm thickness appeared to be highly transparent from UV to the infrared range with a transmittance of ~90% and optical bandgap of ~3.7 eV. The coatings also possess desirable mechanical properties with Young’s modulus of ~78 GPa and density of ~1.9 g/cm3. The combined material properties of high transmittance and high durability make the ion-source-deposited a-C:H coatings attractive for many applications.