skip to main content


Title: Dietary partitioning promotes the coexistence of planktivorous species on coral reefs.
Theories involving niche diversification to explain high levels of tropical diversity propose that species are more likely to co-occur if they partition at least one dimension of their ecological niche space. Yet, numerous species appear to have widely overlapping niches based upon broad categorizations of resource use or functional traits. In particular, the extent to which food partitioning contributes to species coexistence in hyperdiverse tropical ecosystems remains unresolved. Here, we use a molecular approach to investigate inter- and intraspecific dietary partitioning between two species of damselfish (Dascyllus flavicaudus, Chromis viridis) that commonly co-occur in branching corals. Species-level identification of their diverse zooplankton prey revealed significant differences in diet composition between species despite their seemingly similar feeding strategies. Dascyllus exhibited a more diverse diet than Chromis, whereas Chromis tended to select larger prey items. A large calanoid copepod, Labidocera sp., found in low density and higher in the water column during the day, explained more than 19% of the variation in dietary composition between Dascyllus and Chromis. Dascyllus did not significantly shift its diet in the presence of Chromis, which suggests intrinsic differences in feeding behaviour. Finally, prey composition significantly shifted during the ontogeny of both fish species. Our findings show that levels of dietary specialization among coral reef associated species have likely been underestimated, and they underscore the importance of characterizing trophic webs in tropical ecosystems at higher levels of taxonomic resolution. They also suggest that niche redundancy may not be as common as previously thought.  more » « less
Award ID(s):
1637396
NSF-PAR ID:
10155986
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Molecular ecology
Volume:
28
Issue:
10
ISSN:
1365-294X
Page Range / eLocation ID:
2694-2710
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Anthropogenic stressors have strong impacts on ecosystems. To understand their influence, detailed knowledge about trophic relationships among species is critical. However, this requires both exceptional resolution in dietary assessments and sampling breadth within communities, especially for highly diverse, tropical ecosystems.

    We used gut content metabarcoding across a broad range of coral reef fishes (8 families, 22 species) in Mo'orea, French Polynesia, to test whether this technique has the potential to capture the structure of a hyperdiverse marine food web. Moreover, we explored whether taxonomic groups (families) and traditional, broad‐scale trophic assignments explained fish diet across four different metrics of quantifying predator–prey interactions.

    Metabarcoding yielded a large number (4,341) of unique operational taxonomic units (i.e. prey) with high‐resolution taxonomic assignments (i.e. often to the level of genus or species). We demonstrate that across multiple metrics, taxonomic group at the family level is a consistently better, albeit still weak, predictor of empirical trophic relationships than frequently used, broad‐scale functional assignments. Our method also reveals a complex trophic network with fine‐scale partitioning among species, further emphasizing the importance of examining fish diets beyond broad trophic categories.

    We demonstrate the capacity of metabarcoding to reconstruct diverse and complex food webs with exceptional resolution, a significant advancement from traditional food web reconstruction. Furthermore, this method allows us to pinpoint the trophic niche of species with niche‐based modelling, even across hyperdiverse species assemblages such as coral reefs. In conjunction with complementary techniques such as stable isotope analysis, applying metabarcoding to whole communities will provide unparalleled information about energy and nutrient fluxes and inform their susceptibility to disturbances even in the world's most diverse ecosystems.

     
    more » « less
  2. Abstract

    Trophic ecology and resource use are challenging to discern in migratory marine species, including sharks. However, effective management and conservation strategies depend on understanding these life history details. Here we investigate whether dental enameloid zinc isotope (δ66Znen) values can be used to infer intrapopulation differences in foraging ecology by comparing δ66Znenwith same-tooth collagen carbon and nitrogen (δ13Ccoll, δ15Ncoll) values from critically endangered sand tiger sharks (Carcharias taurus) from Delaware Bay (USA). We document ontogeny and sex-related isotopic differences indicating distinct diet and habitat use at the time of tooth formation. Adult females have the most distinct isotopic niche, likely feeding on higher trophic level prey in a distinct habitat. This multi-proxy approach characterises an animal’s isotopic niche in greater detail than traditional isotope analysis alone and shows that δ66Znenanalysis can highlight intrapopulation dietary variability thereby informing conservation management and, due to good δ66Znenfossil tooth preservation, palaeoecological reconstructions.

     
    more » « less
  3. Ecological niche differences are necessary for stable species coexistence but are often difficult to discern. Models of dietary niche differentiation in large mammalian herbivores invoke the quality, quantity, and spatiotemporal distribution of plant tissues and growth forms but are agnostic toward food plant species identity. Empirical support for these models is variable, suggesting that additional mechanisms of resource partitioning may be important in sustaining large-herbivore diversity in African savannas. We used DNA metabarcoding to conduct a taxonomically explicit analysis of large-herbivore diets across southeastern Africa, analyzing ∼4,000 fecal samples of 30 species from 10 sites in seven countries over 6 y. We detected 893 food plant taxa from 124 families, but just two families—grasses and legumes—accounted for the majority of herbivore diets. Nonetheless, herbivore species almost invariably partitioned food plant taxa; diet composition differed significantly in 97% of pairwise comparisons between sympatric species, and dissimilarity was pronounced even between the strictest grazers (grass eaters), strictest browsers (nongrass eaters), and closest relatives at each site. Niche differentiation was weakest in an ecosystem recovering from catastrophic defaunation, indicating that food plant partitioning is driven by species interactions, and was stronger at low rainfall, as expected if interspecific competition is a predominant driver. Diets differed more between browsers than grazers, which predictably shaped community organization: Grazer-dominated trophic networks had higher nestedness and lower modularity. That dietary differentiation is structured along taxonomic lines complements prior work on how herbivores partition plant parts and patches and suggests that common mechanisms govern herbivore coexistence and community assembly in savannas. 
    more » « less
  4. Abstract

    Direct and indirect interactions among predators affect predator fitness, distribution, and overall community structure. Yet, outside of experimental settings, such interactions are difficult to observe and thus poorly understood. Patterns of niche overlap among predators reflect and shape community interactions and may therefore help elucidate the nature and intensity of intraguild interactions. To better understand the coexistence of two apex predators, snow leopards (Panthera uncia) and wolves (Canis lupus), we investigated their spatial, temporal, and dietary niche overlap in summer in the Pamir Mountains of Tajikistan. We estimated population-level space use via spatial capture–recapture models based on noninvasive genetics and camera traps, diel activity patterns based on camera trap detections, and diet composition from prey remains in carnivore scats, from which we estimated coefficients between 0 and 1 for overlap in space, time, and diet, respectively. Snow leopards and wolves displayed moderate spatial partitioning (0.26, 95% confidence interval [CI]: 0.17–37), but overlapping temporal (0.77, 95% CI: 0.64–0.90) and dietary (0.97, 95% CI: 0.80–0.99) niches. Both predators relied on seasonally abundant marmots (Marmota caudata) rather than wild ungulates, their typical primary prey, suggesting that despite patterns of overlap that were superficially conducive to exploitation competition and predator facilitation, prey were likely not a limiting factor. Therefore, prey-mediated interactions, if present, were unlikely to be a major structuring force in the ecosystem. By implication, carnivore conservation planning and monitoring in the mountains of Central Asia should more fully account for the seasonal importance of marmots in the ecosystem.

     
    more » « less
  5. Abstract

    Behavioral niche partitioning is an important and widely assumed mechanism for the coexistence of ecologically similar species. Here we assessed this mechanism by testing its core assumption, that evolved differences in foraging behavior correspond with differences in resources consumed. We combined data on foraging behavior, available prey, and observed diets of five coexisting species of New World wood warblers (Parulidae), a system that has been foundational to our understanding of behavioral niche partitioning. Consistent with past work, we found that the five species differed markedly in their foraging behavior, enough that some species pairs hardly overlapped at all in foraging microhabitat. In contrast, the birds overlapped highly in diet, while exhibiting small, interpretable differences in resource use. The high overlap resulted mostly from all five species consuming numerous ants, a prey source that moves between microhabitats. To test the prediction that the large differences in foraging behavior explain the small dietary differences, we generated expected diets based on available prey and foraging microhabitat use. Consistent with niche partitioning as a coexistence mechanism, we found that the small dietary differences were explained by a combination of foraging microhabitat and available prey, but this pattern was driven by only a small number of prey taxa. Thus, we found mixed support for behavioral niche partitioning. Our results indicate that foraging behavior among these bird species helps explain subtle variation in diet, potentially facilitating coexistence. However, our results also revealed a weak relationship between foraging behavior and resource partitioning. Consequently, studies that rely solely on foraging behavior may greatly overestimate the degree of niche differentiation leading to erroneous conclusions. Overall, this study calls into question how and why these differences in foraging behavior evolved, and what role if any they play in facilitating coexistence.

     
    more » « less