skip to main content


Title: Carbene‐Stabilized Disilicon as a Silicon‐Transfer Agent: Synthesis of a Dianionic Silicon Tris(dithiolene) Complex
Abstract

Reaction of carbene‐stabilized disilicon (1) with the lithium‐based dithiolene radical (2.) affords the first dianionic silicon tris(dithiolene) complex (3). Notably, the formation of3represents the unprecedented utilization of carbene‐stabilized disilicon (1) as a silicon‐transfer agent. The nature of3was probed by multinuclear NMR spectroscopy, single‐crystal X‐ray diffraction, and DFT computations.

 
more » « less
Award ID(s):
1661604
PAR ID:
10156179
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
132
Issue:
23
ISSN:
0044-8249
Page Range / eLocation ID:
p. 8949-8952
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Reaction of carbene‐stabilized disilicon (1) with the lithium‐based dithiolene radical (2.) affords the first dianionic silicon tris(dithiolene) complex (3). Notably, the formation of3represents the unprecedented utilization of carbene‐stabilized disilicon (1) as a silicon‐transfer agent. The nature of3was probed by multinuclear NMR spectroscopy, single‐crystal X‐ray diffraction, and DFT computations.

     
    more » « less
  2. Abstract

    Whereas low‐temperature (−78 °C) reaction of the lithium dithiolene radical1.with boron bromide gives the dibromoboron dithiolene radical2., the parallel reaction of1.with (C6H11)2BCl (0 °C) affords the dicyclohexylboron dithiolene radical3.. Radicals2.and3.were characterized by single‐crystal X‐ray diffraction, UV/Vis, and EPR spectroscopy. The nature of these radicals was also probed computationally. Under mild conditions,3.undergoes unexpected thiourea‐mediated B−C bond activation to give zwitterion4, which may be regarded as an anionic dithiolene‐modified carbene complex of the sulfenyl cation RS+(R=cyclohexyl).

     
    more » « less
  3. Abstract

    Whereas low‐temperature (−78 °C) reaction of the lithium dithiolene radical1.with boron bromide gives the dibromoboron dithiolene radical2., the parallel reaction of1.with (C6H11)2BCl (0 °C) affords the dicyclohexylboron dithiolene radical3.. Radicals2.and3.were characterized by single‐crystal X‐ray diffraction, UV/Vis, and EPR spectroscopy. The nature of these radicals was also probed computationally. Under mild conditions,3.undergoes unexpected thiourea‐mediated B−C bond activation to give zwitterion4, which may be regarded as an anionic dithiolene‐modified carbene complex of the sulfenyl cation RS+(R=cyclohexyl).

     
    more » « less
  4. Abstract

    The 1 : 2 reaction of the imidazole‐based dithiolate (2) with GeCl2 • dioxane in THF/TMEDA gives3, a TMEDA‐complexed dithiolene‐based germylene. Compound3is converted to monothiolate‐complexed (5) and N‐heterocyclic carbene‐complexed (7) germanium(II) dithiolene complexes via Lewis base ligand exchange. A bis‐dithiolene‐based germylene (8), involving a 3c–4e S‐Ge‐S bond, has also been synthesized through controlled hydrolysis of7. The bonding nature of3,5, and8was investigated by both experimental and theoretical methods.

     
    more » « less
  5. The first magnesium-based dithiolene, 2 , was prepared by reaction of the lithium dithiolene radical, 1˙ , with 2-mesitylmagnesium bromide. Reaction of 2 with N-heterocyclic carbenes (in toluene) gave a carbene-stabilized magnesium monodithiolene complex, 3 . Complex 3 , in turn, is readily converted to a THF-solvated magnesium bis-dithiolene dianion, 4 , via partial hydrolysis in polar solvents ( i.e. , THF/CH 3 CN). Compounds 2 , 3 and 4 have been spectroscopically and structurally characterized and probed by DFT computations. 
    more » « less