Reaction of carbene‐stabilized disilicon (
Reaction of carbene‐stabilized disilicon (
- Award ID(s):
- 1661604
- PAR ID:
- 10156179
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie
- Volume:
- 132
- Issue:
- 23
- ISSN:
- 0044-8249
- Page Range / eLocation ID:
- p. 8949-8952
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract 1 ) with the lithium‐based dithiolene radical (2. ) affords the first dianionic silicon tris(dithiolene) complex (3 ). Notably, the formation of3 represents the unprecedented utilization of carbene‐stabilized disilicon (1 ) as a silicon‐transfer agent. The nature of3 was probed by multinuclear NMR spectroscopy, single‐crystal X‐ray diffraction, and DFT computations. -
Abstract Whereas low‐temperature (−78 °C) reaction of the lithium dithiolene radical
1 .with boron bromide gives the dibromoboron dithiolene radical2 ., the parallel reaction of1 .with (C6H11)2BCl (0 °C) affords the dicyclohexylboron dithiolene radical3 .. Radicals2 .and3 .were characterized by single‐crystal X‐ray diffraction, UV/Vis, and EPR spectroscopy. The nature of these radicals was also probed computationally. Under mild conditions,3 .undergoes unexpected thiourea‐mediated B−C bond activation to give zwitterion4 , which may be regarded as an anionic dithiolene‐modified carbene complex of the sulfenyl cation RS+(R=cyclohexyl). -
Abstract Whereas low‐temperature (−78 °C) reaction of the lithium dithiolene radical
1 .with boron bromide gives the dibromoboron dithiolene radical2 ., the parallel reaction of1 .with (C6H11)2BCl (0 °C) affords the dicyclohexylboron dithiolene radical3 .. Radicals2 .and3 .were characterized by single‐crystal X‐ray diffraction, UV/Vis, and EPR spectroscopy. The nature of these radicals was also probed computationally. Under mild conditions,3 .undergoes unexpected thiourea‐mediated B−C bond activation to give zwitterion4 , which may be regarded as an anionic dithiolene‐modified carbene complex of the sulfenyl cation RS+(R=cyclohexyl). -
Abstract The 1 : 2 reaction of the imidazole‐based dithiolate (
2 ) with GeCl2 • dioxane in THF/TMEDA gives3 , a TMEDA‐complexed dithiolene‐based germylene. Compound3 is converted to monothiolate‐complexed (5 ) and N‐heterocyclic carbene‐complexed (7 ) germanium(II) dithiolene complexes via Lewis base ligand exchange. A bis‐dithiolene‐based germylene (8 ), involving a 3c–4e S‐Ge‐S bond, has also been synthesized through controlled hydrolysis of7 . The bonding nature of3 ,5 , and8 was investigated by both experimental and theoretical methods. -
The first magnesium-based dithiolene, 2 , was prepared by reaction of the lithium dithiolene radical, 1˙ , with 2-mesitylmagnesium bromide. Reaction of 2 with N-heterocyclic carbenes (in toluene) gave a carbene-stabilized magnesium monodithiolene complex, 3 . Complex 3 , in turn, is readily converted to a THF-solvated magnesium bis-dithiolene dianion, 4 , via partial hydrolysis in polar solvents ( i.e. , THF/CH 3 CN). Compounds 2 , 3 and 4 have been spectroscopically and structurally characterized and probed by DFT computations.more » « less