We present an agent-based model of manipulating prices in financial markets through spoofing: submitting spurious orders to mislead traders who learn from the order book. Our model captures a complex market environment for a single security, whose common value is given by a dynamic fundamental time series. Agents trade through a limit-order book, based on their private values and noisy observations of the fundamental. We consider background agents following two types of trading strategies: the non-spoofable zero intelligence (ZI) that ignores the order book and the manipulable heuristic belief learning (HBL) that exploits the order book to predict price outcomes. We conduct empirical game-theoretic analysis upon simulated agent payoffs across parametrically different environments and measure the effect of spoofing on market performance in approximate strategic equilibria. We demonstrate that HBL traders can benefit price discovery and social welfare, but their existence in equilibrium renders a market vulnerable to manipulation: simple spoofing strategies can effectively mislead traders, distort prices and reduce total surplus. Based on this model, we propose to mitigate spoofing from two aspects: (1) mechanism design to disincentivize manipulation; and (2) trading strategy variations to improve the robustness of learning from market information. We evaluate the proposed approaches, taking into account potential strategic responses of agents, and characterize the conditions under which these approaches may deter manipulation and benefit market welfare. Our model provides a way to quantify the effect of spoofing on trading behavior and market efficiency, and thus it can help to evaluate the effectiveness of various market designs and trading strategies in mitigating an important form of market manipulation.
more »
« less
Strategic-Agent Equilibria in the Operation of Natural Gas and Power Markets
We consider strategic gas/power producers and strategic gas/power consumers operating in both gas and power markets. We build a flexible multi-period complementarity model to characterize day-ahead equilibria in those markets. This model is an equilibrium program with equilibrium constraints that characterizes the market behavior of all market agents. Using a realistic case study, we analyze equilibria under perfect and oligopolistic competition. We also analyze equilibria under different levels of information disclosure regarding market outcomes. We study as well equilibria under different ownership schemes: no hybrid agent, some hybrid agents, and only hybrid agents. Finally, we derive policy recommendations for the regulators of both the gas and the power markets.
more »
« less
- Award ID(s):
- 1808169
- PAR ID:
- 10156246
- Date Published:
- Journal Name:
- Energies
- Volume:
- 13
- Issue:
- 4
- ISSN:
- 1996-1073
- Page Range / eLocation ID:
- 868
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Prediction markets are powerful tools to elicit and aggregate beliefs from strategic agents. However, in current prediction markets, agents may exhaust the social welfare by competing to be the first to update the market. We initiate the study of the trade-off between how quickly information is aggregated by the market, and how much this information costs. We design markets to aggregate timely information from strategic agents to maximize social welfare. To this end, the market must incentivize agents to invest the correct amount of effort to acquire information: quickly enough to be useful, but not faster (and more expensively) than necessary. The market also must ensure that agents report their information truthfully and on time. We consider two settings: in the first, information is only valuable before a deadline; in the second, the value of information decreases as time passes. We use both theorems and simulations to demonstrate the mechanisms.more » « less
-
We study learning-based trading strategies in markets where prices can be manipulated through spoofing: the practice of submitting spurious orders to mislead traders who use market information. To reduce the vulnerability of learning traders to such manipulation, we propose two variations based on the standard heuristic belief learning (HBL) trading strategy, which learns transaction probabilities from market activities observed in an order book. The first variation selectively ignores orders at certain price levels, particularly where spoof orders are likely to be placed. The second considers the full order book, but adjusts its limit order price to correct for bias in decisions based on the learned heuristic beliefs. We employ agent-based simulation to evaluate these variations on two criteria: effectiveness in non-manipulated markets and robustness against manipulation. Background traders can adopt the (non-learning) zero intelligence strategies or HBL, in its basic form or the two variations. We conduct empirical game-theoretic analysis upon simulated payoffs to derive approximate strategic equilibria, and compare equilibrium outcomes across a variety of trading environments. Results show that agents can strategically make use of the option to block orders to improve robustness against spoofing, while retaining a comparable competitiveness in non-manipulated markets. Our second HBL variation exhibits a general improvement over standard HBL, in markets with and without manipulation. Further explorations suggest that traders can enjoy both improved profitability and robustness by combining the two proposed variations.more » « less
-
We study learning-based trading strategies in markets where prices can be manipulated through spoofing: the practice of submitting spurious orders to mislead traders who use market information. To reduce the vulnerability of learning traders to such manipulation, we propose two variations based on the standard heuristic belief learning (HBL) trading strategy, which learns transaction probabilities from market activities observed in an order book. The first variation selectively ignores orders at certain price levels, particularly where spoof orders are likely to be placed. The second considers the full order book, but adjusts its limit order price to correct for bias in decisions based on the learned heuristic beliefs. We employ agent-based simulation to evaluate these variations on two criteria: effectiveness in non-manipulated markets and robustness against manipulation. Background traders can adopt (non-learning) zero intelligence strategies or HBL, in its basic form or the two variations. We conduct empirical game-theoretic analysis upon simulated payoffs to derive approximate strategic equilibria, and compare equilibrium outcomes across a variety of trading environments. Results show that agents can strategically make use of the option to block orders to improve robustness against spoofing, while retaining a comparable competitiveness in non-manipulated markets. Our second HBL variation exhibits a general improvement over standard HBL, in markets with and without manipulation. Further explorations suggest that traders can enjoy both improved profitability and robustness by combining the two proposed variations.more » « less
-
Electricity systems in many parts of the world are becoming more dependent upon natural gas as an electricity-generation fuel. As such, electricity and natural-gas markets are becoming more interconnected. Contemporaneously, some electricity and natural-gas markets are integrating vertically, through the merger of electricity and natural-gas suppliers. The market-efficiency impacts of such vertical integration are unclear. On one hand, vertical integration could exacerbate market power, whereas on another it could mitigate double marginalization. To study this question, this paper develops a Nash–Cournot model of the two interconnected markets. The model is converted into a linear complementarity problem, which allows deriving Nash equilibria readily. Some theoretical results are derived for the case of a merger involving symmetric firms. In addition, the model is applied to a stylized example with a range of parameter values. We find that integration is social-welfare enhancing—which implies that mitigating double marginalization outweighs the exercise of market power. In most cases, the effects of merger can give rise to a prisoner’s-dilemma-type outcome. Merger is beneficial to the merging firms. However, profits of non-merging firms and total supplier profits decrease following a merger. Overall, our results suggest that vertical integration in energy markets may be socially beneficial. JEL Classification:C61, C72, D43, L1, L94, L95, Q4more » « less
An official website of the United States government

