skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Thermal Properties of the Very Low Thermal Conductivity Ternary Chalcogenide Cu 4 Bi 4 M 9 (M = S, Se)
  more » « less
Award ID(s):
1748188
NSF-PAR ID:
10156270
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
physica status solidi (RRL) – Rapid Research Letters
Volume:
14
Issue:
8
ISSN:
1862-6254
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. The thermal properties of Ba 3 Cu 2 Sn 3 Se 10 were investigated by measurement of the thermal conductivity and heat capacity. The chemical bonding in this diamagnetic material was investigated using structural data from Rietveld refinement and calculated electron localization. This quaternary chalcogenide is monoclinic ( P 2 1 / c ), has a large unit cell with 72 atoms in the primitive cell, and a high local coordination environment. The Debye temperature (162 K) and average speed of sound (1666 m s −1 ) are relatively low with a very small electronic contribution to the heat capacity. Ultralow thermal conductivity (0.46 W m −1 K −1 at room temperature) is attributed to the relatively weak chemical bonding and intrinsic anharmonicity, in addition to a large unit cell. This work is part of the continuing effort to explore quaternary chalcogenides with intrinsically low thermal conductivity and identify the features that result in a low thermal conductivity. 
    more » « less
  3. Quaternary chalcogenides continue to be of interest due to the variety of physical properties they possess, as well as their potential for different applications of interest. Investigations on materials with the sphalerite crystal structure have only recently begun. In this study we have synthesized sulfur-based sphalerite quaternary chalcogenides, including off-stoichiometric compositions, and investigated the temperature-dependent electronic, thermal and structural properties of these materials. Insulating to semiconducting transport is observed with stoichiometric variation, and analyses of heat capacity and thermal expansion revealed lattice anharmonicity that contributes to the low thermal conductivity these materials possess. We include similar analyses for CuZn 2 InSe 4 and compare these sphalerite quaternary chalcogenides to that of zinc blende binaries in order to fully understand the origin of the low thermal conductivity these quaternary chalcogenides possess. 
    more » « less
  4. In this study, we investigate the utility of Ca2FeMnO6-δand Sr2FeMnO6-δas materials with low thermal conductivity, finding potential applications in thermoelectrics, electronics, solar devices, and gas turbines for land and aerospace use. These compounds, characterized as oxygen-deficient perovskites, feature distinct vacancy arrangements. Ca2FeMnO6-δadopts a brownmillerite-type orthorhombic structure with ordered vacancy arrangement, while Sr2FeMnO6-δadopts a perovskite cubic structure with disordered vacancy distribution. Notably, both compounds exhibit remarkably low thermal conductivity, measuring below 0.50 Wm−1K−1. This places them among the materials with the lowest thermal conductivity reported for perovskites. The observed low thermal conductivity is attributed to oxygen vacancies and phonon scattering. Interestingly as SEM images show the smaller grain size, our findings suggest that creating vacancies and lowering the grain size or increasing the grain boundaries play a crucial role in achieving such low thermal conductivity values. This characteristic enhances the potential of these materials for applications where efficient heat dissipation, safety, and equipment longevity are paramount.

     
    more » « less
  5. Abstract

    A solid with larger sound speeds usually exhibits higher lattice thermal conductivity. Here, we report an exception that CuP2has a quite large mean sound speed of 4155 m s−1, comparable to GaAs, but single crystals show very low lattice thermal conductivity of about 4 W m−1K−1at room temperature, one order of magnitude smaller than GaAs. To understand such a puzzling thermal transport behavior, we have thoroughly investigated the atomic structures and lattice dynamics by combining neutron scattering techniques with first-principles simulations. This compound crystallizes in a layered structure where Cu atoms forming dimers are sandwiched in between P atomic networks. In this work, we reveal that Cu atomic dimers vibrate as a rattling mode with frequency around 11 meV, which is manifested to be remarkably anharmonic and strongly scatters acoustic phonons to achieve the low lattice thermal conductivity.

     
    more » « less