 Award ID(s):
 1725774
 Publication Date:
 NSFPAR ID:
 10156297
 Journal Name:
 Earth Surface Dynamics
 Volume:
 8
 Issue:
 2
 Page Range or eLocationID:
 379 to 397
 ISSN:
 2196632X
 Sponsoring Org:
 National Science Foundation
More Like this

Numerical simulation of the form and characteristics of Earth’s surface provides insight into its evolution. Landlab is an Open Source Python package that contains modularized elements of numerical models for Earth’s surface, thus reducing time required for researchers to create new or reimplement existing models. Landlab contains a gridding engine which represents the model domain as a dual graph of structured quadrilaterals (e.g., raster) or irregular Voronoi polygonDelaunay triangle mesh (e.g., regular hexagons, radially symmetric meshes, fully irregular meshes). Landlab also contains components— modular implementations of single physical processes—and a suite of utilities which support numerical methods, input/output, and visualization. This contribution describes package development since version 1.0 and backwardcompatibility breaking changes which necessitates the new major release, version 2.0. Substantial changes include refactoring the grid, improving the component standard interface, dropping Python 2 support, and creating 30 new components—for a total of 57 components in the Landlab package. We describe reasons why many changes were made in order to provide insight to designers of future packages. We conclude by discussing lessons about the dynamics of scientific software development gained from the experience of using, developing, maintaining, and teaching with Landlab.

Abstract. Models of landscape evolution provide insight into the geomorphic history of specific field areas, create testable predictions of landform development, demonstrate the consequences of current geomorphic process theory, and spark imagination through hypothetical scenarios. While the last 4 decades have brought the proliferation of many alternative formulations for the redistribution of mass by Earth surface processes, relatively few studies have systematically compared and tested these alternative equations. We present a new Python package, terrainbento 1.0, that enables multimodel comparison, sensitivity analysis, and calibration of Earth surface process models. Terrainbento provides a set of 28 model programs that implement alternative transport laws related to four process elements: hillslope processes, surfacewater hydrology, erosion by flowing water, and material properties. The 28 model programs are a systematic subset of the 2048 possible numerical models associated with 11 binary choices. Each binary choice is related to one of these four elements – for example, the use of linear or nonlinear hillslope diffusion. Terrainbento is an extensible framework: base classes that treat the elements common to all numerical models (such as input/output and boundary conditions) make it possible to create a new numerical model without reinventing these common methods. Terrainbento is built on top ofmore »

Obeid, I. (Ed.)The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of highresolution images from scanned pathology samples [1], as part of its National Science Foundationfunded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The longterm goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely highdimensional models (e.g., billions of parameters). Other fields that do notmore »

Obeid, I. ; Selesnik, I. ; Picone, J. (Ed.)The Neuronix highperformance computing cluster allows us to conduct extensive machine learning experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2], that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from lowend consumer grade devices such as the Nvidia GTX 970 to higherend devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely computeintensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2]. We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process. Reproducible results are essential to machine learning research. Reproducibility in this context means the ability to replicate an existing experiment – performance metrics such as error rates should be identical and floatingpoint calculations should match closely. Three examples of ways we typically expect an experiment to be replicable are: (1) The same job run on the same processor should produce the same results each time it is run. (2) A job run on a CPU and GPU should producemore »

Purpose The purpose of this paper is as follows: to significantly reduce the computation time (by a factor of 1,000 and more) compared to known numerical techniques for realworld problems with complex interfaces; and to simplify the solution by using trivial unfitted Cartesian meshes (no need in complicated mesh generators for complex geometry). Design/methodology/approach This study extends the recently developed optimal local truncation error method (OLTEM) for the Poisson equation with constant coefficients to a much more general case of discontinuous coefficients that can be applied to domains with different material properties (e.g. different inclusions, multimaterial structural components, etc.). This study develops OLTEM using compact 9point and 25point stencils that are similar to those for linear and quadratic finite elements. In contrast to finite elements and other known numerical techniques for interface problems with conformed and unfitted meshes, OLTEM with 9point and 25point stencils and unfitted Cartesian meshes provides the 3rd and 11th order of accuracy for irregular interfaces, respectively; i.e. a huge increase in accuracy by eight orders for the new 'quadratic' elements compared to known techniques at similar computational costs. There are no unknowns on interfaces between different materials; the structure of the global discrete system is themore »