skip to main content

Title: Bovine tuberculosis disturbs parasite functional trait composition in African buffalo
Novel parasites can have wide-ranging impacts, not only on host populations, but also on the resident parasite community. Historically, impacts of novel parasites have been assessed by examining pairwise interactions between parasite species. However, parasite communities are complex networks of interacting species. Here we used multivariate taxonomic and trait-based approaches to determine how parasite community composition changed when African buffalo ( Syncerus caffer ) acquired an emerging disease, bovine tuberculosis (BTB). Both taxonomic and functional parasite richness increased significantly in animals that acquired BTB than in those that did not. Thus, the presence of BTB seems to catalyze extraordinary shifts in community composition. There were no differences in overall parasite taxonomic composition between infected and uninfected individuals, however. The trait-based analysis revealed an increase in direct-transmitted, quickly replicating parasites following BTB infection. This study demonstrates that trait-based approaches provide insight into parasite community dynamics in the context of emerging infections.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range / eLocation ID:
14645 to 14650
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Species invasion and redistribution, driven by climate change and other anthropogenic influences, alter global biodiversity patterns and disrupt ecosystems. As host species move, they can bring their associated parasites with them, potentially infecting resident species, or leave their parasites behind, enhancing their competitive ability in their new ranges. General rules to predict why invading hosts will retain some parasites but not others are relatively unexplored, and the potential predictors are numerous, ranging from parasite life history to host community composition.

    In this study, we focus on the parasite retention process during host invasion. We used the Global Mammal Parasite Database to identify terrestrial mammal hosts sampled for parasites in both native and non‐native ranges. We then selected predictors likely to play a role in parasite retention, such as parasite type, parasite specialism, species composition of the invaded community, and the invading host's phylogenetic or trait‐based similarity to the new community.

    We modelled parasite retention using boosted regression trees, with a suite of 25 predictors describing parasite and host community traits. We further tested the generality of our predictions by cross‐validating models on data for other hosts and invasion locations.

    Our results show that parasite retention is nonrandom and predictable across hosts and invasions. It is broadly shaped by parasite type and parasite specialism, with more specialist parasites that infect many closely related hosts more likely to be retained. This trend is pronounced across parasite types; helminths, however, show a more uniform likelihood of retention regardless of specificity.

    Overall, we see that most parasites are not retained (11% retained), meaning many invasive species may benefit from enemy release. However, species redistribution does have the potential to spread parasites, and this also has great relevance to understanding conservation implications of species invasions. We see that specialist parasites are most likely to coinvade with their hosts, which suggests that species closely related to the invasive hosts are most likely to be affected by parasite spillover.

    more » « less
  2. Abstract Motivation

    Rapid climate change is altering plant communities around the globe fundamentally. Despite progress in understanding how plants respond to these climate shifts, accumulating evidence suggests that disturbance could not only modify expected plant responses but, in some cases, have larger impacts on compositional shifts than climate change. Climate‐driven disturbances are becoming increasingly common in many biomes and are key drivers of vegetation dynamics at both species and community levels. Palaeoecological records provide valuable observational windows for elucidating the long‐term impacts of these disturbances on plant dynamics; however, sparse resolution and difficulty in disentangling drivers of change limit our ability to understand the impact of disturbance on plant communities. In this targeted review, we highlight emerging opportunities in palaeoecology to advance our understanding about how disturbance, especially fire, impacts the ecological and evolutionary dynamics of terrestrial plant communities.


    Global examples, with many from North America.


    We propose a set of palaeoecological and integrative approaches that could greatly enhance our understanding of how disturbance regimes influence global plant dynamics. Specifically, we identify four future study areas: (1) focus on palaeoecological disturbance proxies beyond fire and leverage multi proxy research to examine the influence of interacting disturbances on plant community dynamics; (2) use advances in disturbance and vegetation reconstructions, including ancient sedimentary DNA, to provide the spatial, temporal and taxonomic resolution needed to resolve the relationship between changing disturbance regimes and corresponding shifts in plant community composition; (3) integrate palaeoecological, archaeological and Indigenous knowledge to disentangle the complex interplay between climate, human land use, fire and vegetation structure; and (4) apply “functional palaeoecology” and the synergy between palaeoecology and genetics to understand how fire disturbance has served as a long‐standing selective agent on plants. These frameworks could increase the resolution of disturbance‐driven plant dynamics, potentially providing valuable information for future management.

    more » « less
  3. Abstract

    Host movements, including migrations or range expansions, are known to influence parasite communities. Transitions to captivity—a rarely studied yet widespread human‐driven host movement—can also change parasite communities, in some cases leading to pathogen spillover among wildlife species, or between wildlife and human hosts. We compared parasite species richness between wild and captive populations of 22 primate species, including macro‐ (helminths and arthropods) and micro‐parasites (viruses, protozoa, bacteria, and fungi). We predicted that captive primates would have only a subset of their native parasite community, and would possess fewer parasites with complex life cycles requiring intermediate hosts or vectors. We further predicted that captive primates would have parasites transmitted by close contact and environmentally—including those shared with humans and other animals, such as commensals and pests. We found that the composition of primate parasite communities shifted in captive populations, especially because of turnover (parasites detected in captivity but not reported in the wild), but with some evidence of nestedness (holdovers from the wild). Because of the high degree of turnover, we found no significant difference in overall parasite richness between captive and wild primates. Vector‐borne parasites were less likely to be found in captivity, whereas parasites transmitted through either close or non‐close contact, including through fecal‐oral transmission, were more likely to be newly detected in captivity. These findings identify parasites that require monitoring in captivity and raise concerns about the introduction of novel parasites to potentially susceptible wildlife populations during reintroduction programs.

    more » « less
  4. Abstract Morphological traits from blood stages have been the gold standard for determining haemosporidian parasite species. However, the status of some taxa and the value of such traits in parasites from reptiles remain contentious. The scarce sampling of these species worsens the situation, and several taxa lack molecular data. A survey was performed in the Magdalena Department in Colombia, where 16 species of reptiles were captured. A peculiar haemosporidian parasite was found in the Turnip-tailed gecko Thecadactylus rapicauda . This haemosporidian does not show malarial pigment in blood stages under light microscopy; thus, it fits the Garnia genus's characters belonging to the Garniidae . However, the phylogenetic analyses using a partial sequence of cytochrome b and the mitochondrial DNA placed it within the Plasmodium clade. Our findings suggest that many putative Garnia species belong to the genus Plasmodium , like the one reported here. This study either shows that visible malarial pigment in blood stages is not a diagnostic trait of the genus Plasmodium or malarial pigment might be present in an undetectable form under a light microscope. In any case, the current taxonomy of haemosporidian parasites in reptiles requires revision. This study highlights the importance of using molecular and morphological traits to address taxonomic questions at the species and genus levels in haemosporidian parasites from reptiles. 
    more » « less
  5. Prieto Aguilar, Iván (Ed.)
    The use of trait-based approaches to understand ecological communities has increased in the past two decades because of their promise to preserve more information about community structure than taxonomic methods and their potential to connect community responses to subsequent effects of ecosystem functioning. Though trait-based approaches are a powerful tool for describing ecological communities, many important properties of commonly-used trait metrics remain unexamined. Previous work in studies that simulate communities and trait distributions show consistent sensitivity of functional richness and evenness measures to the number of traits used to calculate them, but these relationships have yet to be studied in actual plant communities with a realistic distribution of trait values, ecologically meaningful covariation of traits, and a realistic number of traits available for analysis. Therefore, we propose to test how the number of traits used and the correlation between traits used in the calculation of functional diversity indices impacts the magnitude of eight functional diversity metrics in real plant communities. We will use trait data from three grassland plant communities in the US to assess the generality of our findings across ecosystems and experiments. We will determine how eight functional diversity metrics (functional richness, functional evenness, functional divergence, functional dispersion, kernel density estimation (KDE) richness, KDE evenness, KDE dispersion, Rao’s Q) differ based on the number of traits used in the metric calculation and on the correlation of traits when holding the number of traits constant. Without a firm understanding of how a scientist’s choices impact these metric, it will be difficult to compare results among studies with different metric parametrization and thus, limit robust conclusions about functional composition of communities across systems. 
    more » « less