skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Progress towards a widely usable integrated silicon photonic photon-pair source
Photon-pair generation at telecommunication wavelengths using high-quality silicon microring resonators is an active area of research. Here, we report on significant progress towards the ultimate goal of an integrated silicon microchip for bright generation of photon pairs with multiple stages of tunable optical filtering on the same chip. A high pair generation brightness of 6.5×1010pairs/s/mW2/nm is achieved. The resonance of the high-Q silicon microring resonator can be monitored using a high dynamic range readout of a photocurrent in an all-silicon p-i-n diode fabricated across the waveguide cross-section, which is used to align the ring resonance to the passbands or stopbands of the filters.  more » « less
Award ID(s):
1640968
PAR ID:
10156651
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
OSA Continuum
Volume:
3
Issue:
6
ISSN:
2578-7519
Format(s):
Medium: X Size: Article No. 1398
Size(s):
Article No. 1398
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Entanglement plays a vital role in quantum information processing. Owing to its unique material properties, silicon carbide recently emerged as a promising candidate for the scalable implementation of advanced quantum information processing capabilities. To date, however, only entanglement of nuclear spins has been reported in silicon carbide, while an entangled photon source, whether it is based on bulk or chip-scale technologies, has remained elusive. Here, we report the demonstration of an entangled photon source in an integrated silicon carbide platform for the first time. Specifically, strongly correlated photon pairs are efficiently generated at the telecom C-band wavelength through implementing spontaneous four-wave mixing in a compact microring resonator in the 4H-silicon-carbide-on-insulator platform. The maximum coincidence-to-accidental ratio exceeds 600 at a pump power of 0.17 mW, corresponding to a pair generation rate of (9 ± 1) × 103pairs/s. Energy-time entanglement is created and verified for such signal-idler photon pairs, with the two-photon interference fringes exhibiting a visibility larger than 99%. The heralded single-photon properties are also measured, with the heraldedg(2)(0) on the order of 10−3, demonstrating the SiC platform as a prospective fully integrated, complementary metal-oxide-semiconductor compatible single-photon source for quantum applications. 
    more » « less
  2. Silicon microring resonators are being recently used for high-brightness and efficient photon-pair generation at telecommunication wavelengths. Here, based on detailed theoretical and numerical modeling, we study the impact on pair generation of increasing the optical pump power, which generally causes nonlinear impairments such as free-carrier and two-photon absorption in silicon micro-resonators. Contrary to expectation, the pair generation properties of such devices may seem to be preserved at increasing pump powers, although not better than at a moderate pump power. These results suggest that silicon microrings can be used for pair generation over a wide range of pump powers, which may benefit applications in remotely pumped architectures, where the pump level might not be known a priori. 
    more » « less
  3. We report photon pairs and heralded single photons generated at 1310 nm wavelengths using silicon photonics technology, demonstrating that comparable performance could be achieved when a silicon microring resonator was pumped either by a desktop laser instrument or by an electrically injected, room-temperature hybrid silicon laser. Measurements showed that 130 kilo-coincidence-counts per second pair rates could be generated, with coincidences-to-accidentals ratio approximately 100 at about 0.34 mW optical pump power and anti-bunching upon heralding with second-order intensity correlation g(2)(0) = 0.06 at about 0.9 mW optical pump power. These results suggest that hybrid silicon lasers, which are ultra-compact and wafer-scale manufacturable, could be used in place of packaged, stand-alone lasers for generating photon pairs at data communication wavelengths and enable large-scale, cost-effective manufacturing of integrated sources for quantum communications and computing. 
    more » « less
  4. Using an aluminum gallium arsenide microring resonator, we demonstrate a bright quantum optical microcomb with >300 nm (>40 THz) bandwidth and more than 20 sets of time–energy entangled modes, enabling spectral demultiplexing with simple, off-the-shelf commercial telecom components. We report high-rate continuous entanglement distribution for two sets of entangled-photon pair frequency modes exhibiting up to 20 GHz/mW2pair generation rate. As an illustrative example of entanglement distribution, we perform a continuous-wave time-bin quantum key distribution protocol with 8 kbps sifted key rates while maintaining less than 10% error rate and sufficient two-photon visibility to ensure security of the channel. When the >20 frequency modes are multiplexed, we estimate >100 kbps entanglement-based key rates or the creation of a multi-user quantum communications network. The entire system requires less than 110 µW of on-chip optical power, demonstrating an efficient source of entangled frequency modes for quantum communications. As a proof of principle, a quantum key is distributed across 12 km of deployed fiber on the University of California Santa Barbara (UCSB) campus and used to encrypt a 21 kB image with <9% error. 
    more » « less
  5. We showcase a fully on-chip CMOS-fabricated silicon photonic integrated circuit employing a bidirectionally pumped microring and polarization splitter-rotators tailored for the generation of broadband (>9 THz), high-fidelity (90–98%) polarization-entangled photons. Spanning the optical C+L-band and producing over 116 frequency-bin pairs on a 38.4-GHz-spaced grid, this source is ideal for flex-grid wavelength-multiplexed entanglement distribution in multiuser networks. 
    more » « less