- Publication Date:
- NSF-PAR ID:
- 10156779
- Journal Name:
- International Congress on Acoustics
- Page Range or eLocation-ID:
- 604-611
- ISSN:
- 2226-7808
- Sponsoring Org:
- National Science Foundation
More Like this
-
The dynamic interactions between an incident line vortex and a symmetric Joukowski airfoil on elastic translational support are formulated analytically and evaluated numerically, where the unsteady shedding of vorticity from the airfoil trailing edge is modeled by the emended Brown and Michael equation. This mathematical framework explores the effects of initial vortex placement, vortex strength, and the system aeroelastic parameters on the selection of the vortex trajectory to pass either above or below the airfoil, where special attention is paid to the conditions where direct impingement occurs.
-
This paper presents a state-variable formulation to model and simulate the 2D unsteady aerodynamics of an airfoil undergoing arbitrary motion kinematics. The model builds upon a large-angle unsteady aerodynamic formulation in which the airfoil is represented using a lumped vortex element (LVE) model. The airfoil is divided into several panels, with a bound vortex placed on each panel. At any time instant, the bound-vortex strengths are determined by employing zero-normal-flow conditions at the control points located on each panel. The vorticity shed from the trailing edge of the airfoil is modeled using discrete vortices that move freely in the flow field. The required state variables are first identified, and all the time derivative terms of the state variables are then derived to form the final state-variable representation. Trailing-edge vortex shedding is incorporated using the Kelvin condition. The final state variable equation can be solved as an ordinary differential equation using any standard ODE-solving algorithm. Three case studies are presented here to evaluate the predictions of the model. In the cases considered here, the airfoil undergoes various unsteady plunge motions. The aerodynamic load history and the wake patterns are compared against the results from the low-order model developed by Narsipur etmore »
-
The rising global trend to reduce dependence on fossil fuels has provided significant motivation toward the development of alternative energy conversion methods and new technologies to improve their efficiency. Recently, oscillating energy harvesters have shown promise as highly efficient and scalable turbines, which can be implemented in areas where traditional energy extraction and conversion are either unfeasible or cost prohibitive. Although such devices are quickly gaining popularity, there remain a number of hurdles in the understanding of their underlying fluid dynamics phenomena. The ability to achieve high efficiency power output from oscillating airfoil energy harvesters requires exploitation of the complexities of the event of dynamic stall. During dynamic stall, the oncoming flow separates at the leading edge of the airfoil to form leading ledge vortex (LEV) structures. While it is well known that LEVs play a significant role in aerodynamic force generation in unsteady animal flight (e.g. insects and birds), there is still a need to further understand their spatiotemporal evolution in order to design more effective energy harvesting enhancement mechanisms. In this work, we conduct extensive experimental investigations to shed-light on the flow physics of a heaving and pitching airfoil energy harvester operating at reduced frequencies of k =more »
-
Abstract Flapping insect wings experience appreciable deformation due to aerodynamic and inertial forces. This deformation is believed to benefit the insect’s aerodynamic force production as well as energetic efficiency. However, the fluid-structure interaction (FSI) models used to estimate wing deformations are often computationally demanding and are therefore challenged by parametric studies. Here, we develop a simple FSI model of a flapping wing idealized as a two-dimensional pitching-plunging airfoil. Using the Lagrangian formulation, we derive the reduced-order structural framework governing wing’s elastic deformation. We consider two fluid models: quasi-steady Deformable Blade Element Theory (DBET) and Unsteady Vortex Lattice Method (UVLM). DBET is computationally economical but does not provide insight into the flow structure surrounding the wing, whereas UVLM approximates flows but requires more time to solve. For simple flapping kinematics, DBET and UVLM produce similar estimates of the aerodynamic force normal to the surface of a rigid wing. More importantly, when the wing is permitted to deform, DBET and UVLM agree well in predicting wingtip deflection and aerodynamic normal force. The most notable difference between the model predictions is a roughly 20° phase difference in normal force. DBET estimates wing deformation and force production approximately 15 times faster than UVLM formore »
-
We study analytically the dynamic response of membrane aerofoils subject to arbitrary, small-amplitude chord motions and transverse gusts in a two-dimensional inviscid incompressible flow. The theoretical model assumes linear deformations of an extensible membrane under constant tension, which are coupled aeroelastically to external aerodynamic loads using unsteady thin aerofoil theory. The structural and aerodynamic membrane responses are investigated for harmonic heave oscillations, an instantaneous change in angle of attack, sinusoidal transverse gusts and a sharp-edged gust. The unsteady lift responses for these scenarios produce aeroelastic extensions to the Theodorsen, Wagner, Sears and Küssner functions, respectively, for a membrane aerofoil. These extensions incorporate for the first time membrane fluid–structure interaction into the expressions for the unsteady lift response of a flexible aerofoil. The indicial responses to step changes in the angle of attack or gust profile are characterised by a slower lift response in short times relative to the classical rigid-plate response, while achieving a significantly higher asymptotic lift at long times due to aeroelastic camber. The unsteady lift for harmonic gusts or heaving motions follows closely the rigid plate lift responses at low reduced frequencies but with a reduced lift amplitude and greater phase lag. However, as the reduced frequencymore »