skip to main content

Title: MicPrint: acoustic sensor fingerprinting for spoof-resistant mobile device authentication
Smartphones are the most commonly used computing platform for accessing sensitive and important information placed on the Internet. Authenticating the smartphone's identity in addition to the user's identity is a widely adopted security augmentation method since conventional user authentication methods, such as password entry, often fail to provide strong protection by itself. In this paper, we propose a sensor-based device fingerprinting technique for identifying and authenticating individual mobile devices. Our technique, called MicPrint, exploits the unique characteristics of embedded microphones in mobile devices due to manufacturing variations in order to uniquely identify each device. Unlike conventional sensor-based device fingerprinting that are prone to spoofing attack via malware, MicPrint is fundamentally spoof-resistant since it uses acoustic features that are prominent only when the user blocks the microphone hole. This simple user intervention acts as implicit permission to fingerprint the sensor and can effectively prevent unauthorized fingerprinting using malware. We implement MicPrint on Google Pixel 1 and Samsung Nexus to evaluate the accuracy of device identification. We also evaluate its security against simple raw data attacks and sophisticated impersonation attacks. The results show that after several incremental training cycles under various environmental noises, MicPrint can achieve high accuracy and reliability for both smartphone more » models. « less
Authors:
; ;
Award ID(s):
1719336 1845469
Publication Date:
NSF-PAR ID:
10156908
Journal Name:
Proceedings of the 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services
Page Range or eLocation-ID:
248 - 257
Sponsoring Org:
National Science Foundation
More Like this
  1. Reliably identifying and authenticating smartphones is critical in our daily life since they are increasingly being used to manage sensitive data such as private messages and financial data. Recent researches on hardware fingerprinting show that each smartphone, regardless of the manufacturer or make, possesses a variety of hardware fingerprints that are unique, robust, and physically unclonable. There is a growing interest in designing and implementing hardware-rooted smartphone authentication which authenticates smartphones through verifying the hardware fingerprints of their built-in sensors. Unfortunately, previous fingerprinting methods either involve large registration overhead or suffer from fingerprint forgery attacks, rendering them infeasible in authentication systems. In this paper, we propose ABC, a real-time smartphone Authentication protocol utilizing the photo-response non-uniformity (PRNU) of the Built-in Camera. In contrast to previous works that require tens of images to build reliable PRNU features for conventional cameras, we are the first to observe that one image alone can uniquely identify a smartphone due to the unique PRNU of a smartphone image sensor. This new discovery makes the use of PRNU practical for smartphone authentication. While most existing hardware fingerprints are vulnerable against forgery attacks, ABC defeats forgery attacks by verifying a smartphone’s PRNU identity through a challenge responsemore »protocol using a visible light communication channel. A user captures two time-variant QR codes and sends the two images to a server, which verifies the identity by fingerprint and image content matching. The time-variant QR codes can also defeat replay attacks. Our experiments with 16,000 images over 40 smartphones show that ABC can efficiently authenticate user devices with an error rate less than 0.5%.« less
  2. Reliably identifying and authenticating smart- phones is critical in our daily life since they are increasingly being used to manage sensitive data such as private messages and financial data. Recent researches on hardware fingerprinting show that each smartphone, regardless of the manufacturer or make, possesses a variety of hardware fingerprints that are unique, robust, and physically unclonable. There is a growing interest in designing and implementing hardware-rooted smart- phone authentication which authenticates smartphones through verifying the hardware fingerprints of their built-in sensors. Unfortunately, previous fingerprinting methods either involve large registration overhead or suffer from fingerprint forgery attacks, rendering them infeasible in authentication systems. In this paper, we propose ABC, a real-time smartphone Au- thentication protocol utilizing the photo-response non-uniformity (PRNU) of the Built-in Camera. In contrast to previous works that require tens of images to build reliable PRNU features for conventional cameras, we are the first to observe that one image alone can uniquely identify a smartphone due to the unique PRNU of a smartphone image sensor. This new discovery makes the use of PRNU practical for smartphone authentication. While most existing hardware fingerprints are vulnerable against forgery attacks, ABC defeats forgery attacks by verifying a smartphone’s PRNU identity throughmore »a challenge response protocol using a visible light communication channel. A user captures two time-variant QR codes and sends the two images to a server, which verifies the identity by fingerprint and image content matching. The time-variant QR codes can also defeat replay attacks. Our experiments with 16,000 images over 40 smartphones show that ABC can efficiently authenticate user devices with an error rate less than 0.5%.« less
  3. Smart mobile devices have become an integral part of people's life and users often input sensitive information on these devices. However, various side channel attacks against mobile devices pose a plethora of serious threats against user security and privacy. To mitigate these attacks, we present a novel secure Back-of-Device (BoD) input system, SecTap, for mobile devices. To use SecTap, a user tilts her mobile device to move a cursor on the keyboard and tap the back of the device to secretly input data. We design a tap detection method by processing the stream of accelerometer readings to identify the user's taps in real time. The orientation sensor of the mobile device is used to control the direction and the speed of cursor movement. We also propose an obfuscation technique to randomly and effectively accelerate the cursor movement. This technique not only preserves the input performance but also keeps the adversary from inferring the tapped keys. Extensive empirical experiments were conducted on different smart phones to demonstrate the usability and security on both Android and iOS platforms.
  4. Combating the OS-level malware is a very challenging problem as this type of malware can compromise the operating system, obtaining the kernel privilege and subverting almost all the existing anti-malware tools. This work aims to address this problem in the context of mobile devices. As real-world malware is very heterogeneous, we narrow down the scope of our work by especially focusing on a special type of OS-level malware that always corrupts user data. We have designed mobiDOM, the first framework that can combat the OS-level data corruption malware for mobile computing devices. Our mobiDOM contains two components, a malware detector and a data repairer. The malware detector can securely and timely detect the presence of OS-level malware by fully utilizing the existing hardware features of a mobile device, namely, flash memory and Arm TrustZone. Specifically, we integrate the malware detection into the flash translation layer (FTL), a firmware layer embedded into the flash storage hardware, which is inaccessible to the OS; in addition, we run a trusted application in the Arm TrustZone secure world, which acts as a user-level manager of the malware detector. The FTL-based malware detection and the TrustZone-based manager can communicate with each other stealthily via steganography.more »The data repairer can allow restoring the external storage to a healthy historical state by taking advantage of the out-of-place-update feature of flash memory and our malware-aware garbage collection in the FTL. Security analysis and experimental evaluation on a real-world testbed confirm the effectiveness of mobiDOM.« less
  5. Abstract In recent years, we have seen rapid growth in the use and adoption of Internet of Things (IoT) devices. However, some loT devices are sensitive in nature, and simply knowing what devices a user owns can have security and privacy implications. Researchers have, therefore, looked at fingerprinting loT devices and their activities from encrypted network traffic. In this paper, we analyze the feasibility of fingerprinting IoT devices and evaluate the robustness of such fingerprinting approach across multiple independent datasets — collected under different settings. We show that not only is it possible to effectively fingerprint 188 loT devices (with over 97% accuracy), but also to do so even with multiple instances of the same make-and-model device. We also analyze the extent to which temporal, spatial and data-collection-methodology differences impact fingerprinting accuracy. Our analysis sheds light on features that are more robust against varying conditions. Lastly, we comprehensively analyze the performance of our approach under an open-world setting and propose ways in which an adversary can enhance their odds of inferring additional information about unseen devices (e.g., similar devices manufactured by the same company).