Abstract We present 500 and 700 au resolution 1 and 3 mm Atacama Large Millimeter/submillimeter Array observations, respectively, of protostellar cores in protoclusters Sagittarius B2 (Sgr B2) North (N) and Main (M), parts of the most actively star-forming cloud in our Galaxy. Previous lower-resolution (5000 au) 3 mm observations of this region detected ∼150 sources inferred to be young stellar objects (YSOs) withM> 8M⊙. With a 10-fold increase in resolution, we detect 371 sources at 3 mm and 218 sources in the smaller field of view at 1 mm. The sources seen at low resolution are observed to fragment into an average of two objects. About one-third of the observed sources fragment. Most of the sources we report are marginally resolved and are at least partially optically thick. We determine that the observed sources are most consistent with Stage 0/I YSOs, i.e., rotationally supported disks with an active protostar and an envelope, that are warmer than those observed in the solar neighborhood. We report source-counting-based inferred stellar mass and the star formation rate of the cloud: 2800M⊙and 0.0038M⊙yr−1for Sgr B2 N and 6900M⊙and 0.0093M⊙yr−1for Sgr B2 M, respectively.
more »
« less
Timely Updates By Multiple Sources: The M/M/1 Queue Revisited
Multiple sources submit updates to a monitor through an M/M/1 queue. A stochastic hybrid system (SHS) approach is used to derive the average age of information (AoI) for an individual source as a function of the offered load of that source and the competing update traffic offered by other sources. This work corrects an error in a prior analysis. By numerical evaluation, this error is observed to be small and qualitatively insignificant.
more »
« less
- Award ID(s):
- 1717041
- PAR ID:
- 10157007
- Date Published:
- Journal Name:
- 2020 54th Annual Conference on Information Sciences and Systems (CISS)
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present the analysis of the microlensing event OGLE-2015-BLG-0845, which was affected by both the microlensing parallax and xallarap effects. The former was detected via the simultaneous observations from the ground and Spitzer, and the latter was caused by the orbital motion of the source star in a relatively close binary. The combination of these two effects led to a mass measurement of the lens object, revealing a low-mass ($$0.14 \pm 0.05 \, \mathrm{ M}_{\odot }$$) M dwarf at the bulge distance ($$7.6 \pm 1.0$$ kpc). The source binary consists of a late F-type subgiant and a K-type dwarf of $$\sim 1.2$$ and $$\sim 0.9 \mathrm{ M}_{\odot }$$, respectively, and the orbital period is $$70 \pm 10$$ d. OGLE-2015-BLG-0845 is the first single-lens event in which the lens mass is measured via the binarity of the source. Given the abundance of binary systems as potential microlensing sources, the xallarap effect may not be a rare phenomenon. Our work thus highlights the application of the xallarap effect in the mass determination of microlenses, and the same method can be used to identify isolated dark lenses.more » « less
-
null (Ed.)This paper is dedicated to Michael J. Duff on the occasion of his 70th birthday. I discuss some issues of M-theory/string theory/supergravity closely related to Mike’s interests. I describe a relation between STU black hole entropy, the Cayley hyperdeterminant, the Bhargava cube and a three-qubit Alice–Bob–Charlie triality symmetry. I shortly describe my recent work with Gunaydin, Linde and Yamada on M-theory cosmology (Gunaydin et al. 2020 M-theory cosmology, octonions, error-correcting codes ( http://arxiv.org/abs/2008.01494 )), inspired by the work of Duff with Ferrara and Borsten, Levay, Marrani et al. Here, we have seven-qubits, a party including Alice, Bob, Charlie, Daisy, Emma, Fred and George. Octonions and Hamming error-correcting codes are at the base of these models. They lead to seven benchmark targets of future cosmic microwave background missions looking for primordial gravitational waves from inflation. I also show puzzling relations between the fermion mass eigenvalues in these cosmological models, the exceptional Jordan eigenvalue problem and black hole entropy. The symmetry of our cosmological models is illustrated by beautiful pictures of a Coxeter projection of the root system of E7.more » « less
-
Abstract We report the observation of a coalescing compact binary with component masses 2.5–4.5M⊙and 1.2–2.0M⊙(all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO–Virgo–KAGRA detector network on 2023 May 29 by the LIGO Livingston observatory. The primary component of the source has a mass less than 5M⊙at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star–black hole merger, GW230529_181500-like sources may make up the majority of neutron star–black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star–black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap.more » « less
-
This paper studies M-estimators with gradient-Lipschitz loss function regularized with convex penalty in linear models with Gaussian design matrix and arbitrary noise distribution. A practical example is the robust M-estimator constructed with the Huber loss and the Elastic-Net penalty and the noise distribution has heavy-tails. Our main contributions are three-fold. (i) We provide general formulae for the derivatives of regularized M-estimators $$\hat\beta(y,X)$$ where differentiation is taken with respect to both X and y; this reveals a simple differentiability structure shared by all convex regularized M-estimators. (ii) Using these derivatives, we characterize the distribution of the residuals in the intermediate high-dimensional regime where dimension and sample size are of the same order. (iii) Motivated by the distribution of the residuals, we propose a novel adaptive criterion to select tuning parameters of regularized M-estimators. The criterion approximates the out-of-sample error up to an additive constant independent of the estimator, so that minimizing the criterion provides a proxy for minimizing the out-of-sample error. The proposed adaptive criterion does not require the knowledge of the noise distribution or of the covariance of the design. Simulated data confirms the theoretical findings, regarding both the distribution of the residuals and the success of the criterion as a proxy of the out-of-sample error. Finally our results reveal new relationships between the derivatives of the $$\hat\beta$$ and the effective degrees of freedom of the M-estimators, which are of independent interest.more » « less