skip to main content


Title: Molecular Dialog Between Parasitic Plants and Their Hosts
Parasitic plants steal sugars, water, and other nutrients from host plants through a haustorial connection. Several species of parasitic plants such as witchweeds ( Striga spp.) and broomrapes ( Orobanche and Phelipanche spp.) are major biotic constraints to agricultural production. Parasitic plants are understudied compared with other major classes of plant pathogens, but the recent availability of genomic and transcriptomic data has accelerated the rate of discovery of the molecular mechanisms underpinning plant parasitism. Here, we review the current body of knowledge of how parasitic plants sense host plants, germinate, form parasitic haustorial connections, and suppress host plant immune responses. Additionally, we assess whether parasitic plants fit within the current paradigms used to understand the molecular mechanisms of microbial plant–pathogen interactions. Finally, we discuss challenges facing parasitic plant research and propose the most urgent questions that need to be answered to advance our understanding of plant parasitism.  more » « less
Award ID(s):
1645027
NSF-PAR ID:
10157060
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Annual Review of Phytopathology
Volume:
57
Issue:
1
ISSN:
0066-4286
Page Range / eLocation ID:
279 to 299
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The widespread digitization of natural history collections, combined with novel tools and approaches is revolutionizing biodiversity science. The ‘extended specimen’ concept advocates a more holistic approach in which a specimen is framed as a diverse stream of interconnected data. Herbarium specimens that by their very nature capture multispecies relationships, such as certain parasites, fungi and lichens, hold great potential to provide a broader and more integrative view of the ecology and evolution of symbiotic interactions. This particularly applies to parasite–host associations, which owing to their interconnectedness are especially vulnerable to global environmental change.

    Here, we present an overview of how parasitic flowering plants is represented in herbarium collections. We then discuss the variety of data that can be gathered from parasitic plant specimens, and how they can be used to understand global change impacts at multiple scales. Finally, we review best practices for sampling parasitic plants in the field, and subsequently preparing and digitizing these specimens.

    Plant parasitism has evolved 12 times within angiosperms, and similar to other plant taxa, herbarium collections represent the foundation for analysing key aspects of their ecology and evolution. Yet these collections hold far greater potential. Data and metadata obtained from parasitic plant specimens can inform analyses of co‐distribution patterns, changes in eco‐physiology and species plasticity spanning temporal and spatial scales, chemical ecology of tripartite interactions (e.g. host–parasite–herbivore), and molecular data critical for species conservation. Moreover, owing to the historic nature and sheer size of global herbarium collections, these data provide the spatiotemporal breadth essential for investigating organismal response to global change.

    Parasitic plant specimens are primed to serve as ideal examples of extended specimen concept and help motivate the next generation of creative and impactful collection‐based science. Continued digitization efforts and improved curatorial practices will contribute to opening these specimens to a broader audience, allowing integrative research spanning multiple domains and offering novel opportunities for education.

     
    more » « less
  2. Societal Impact Statement Summary

    Rafflesiais of great interest as one of the only two plants known to have completely lost its chloroplast genome.Rafflesiais a holoparasite and an endophyte that lives inside the tissues of its host, a tropical grape vine (Tetrastigma), emerging only to bloom—with the largest flower of any plant. Here, we report the firstRafflesiaseed transcriptome and compare it with those of other plants to deepen our understanding of its extraordinary life history.

    We assembled a transcriptome from RNA extracted from seeds of the Philippine endemicRafflesia speciosaand compared this with those of other plants, includingArabidopsis, parasitic plantsStrigaandCuscuta, and the mycoheterotrophic orchidAnoectochilus.

    Genetic and metabolic seed pathways inRafflesiawere generally similar to the other plant species. However, there were some notable exceptions. We found evidence of horizontal transfer of a gene potentially involved in circumventing host defenses. Moreover, we identified a possible convergence among parasitic plants becauseRafflesia,Striga, andCuscutashared important similarities. We were unable to find evidence of genes involved in mycorrhizal symbiosis, suggesting that mycoheterotrophy is unlikely to play a role inRafflesiaparasitism.

    To date, ex situ propagation ofRafflesiaby seed has been mostly unsuccessful. Our research is a bold step forward in understanding the fundamentals ofRafflesiaseed biology that will inform the continued propagation and seed‐banking efforts concerning this recalcitrant plant. We discuss our findings in the broader context of the conservation of a genus in peril.

     
    more » « less
  3. Loranthaceae are parasitic plants in about 76 genera that are predominantly found in subtropical and temperate regions of the Southern Hemisphere as branch parasites. Australia is an area of high diversity with about 11 genera and 65 species, most of which are endemic. Loranthaceae branch parasites are also morphologically diverse having both radial and zygomorphic flowers that are typically bird pollinated and each of the four basic haustorial types. Haustorial types include epicortical roots (ERs) that grow along the host branch surface and at intervals form secondary attachments to their host, clasping unions where parasite tissue enlarges partially encircling the host branch, wood roses where host tissue proliferates forming a placenta where the parasite is attached, and bark strands that spread within the outer tissues of the host branch. We hypothesized that those haustoria where parasitic tissue proliferated, such as ERs and clasping unions, would occupy more mesic environments. To test this hypothesis and investigate other relationships among ecological parameters and haustorial form we used 17,753 sets of occurrence and ecological data from the Atlas of Living Australia (ALA) online repository for 42 species of Loranthaceae. We analyzed haustorial forms through comparative studies of haustoria housed at the UC Herbarium, relevant literature, and collections in public repositories. Biogeographical and environmental data were analyzed using mapping and statistical methods in the R environment. Our preliminary research suggests that bark strands are found in climatic regions across Australia, including deserts, while both epicortical roots (ERs) and clasping unions are mostly restricted to mesic coastlines of eastern Australia (21 of 22 species with ERs occur only along eastern coastlines of Australia or in the Cape York Peninsula). Wood roses are less common in Australia with few data points. Haustoria are sometimes complex, especially clasping unions where bark strands are occasionally also produced. An interesting finding was that Amyema sanguinea has a wide distribution in arid as well as mesic climates even though it has ERs. This species has unusually robust ERs that might contribute to its wider ecological niche. Evolution of haustoria in Australia is discussed based on phylogenetic hypotheses of Loranthaceae genera. 
    more » « less
  4. Root-knot nematodes (RKN; Meloidogyne spp.) represent one of the most damaging groups of plant-parasitic nematodes. They secrete effector proteins through a protrusible stylet to manipulate host cells for their benefit. Stylet-secreted effector proteins are produced within specialized secretory esophageal gland cells, one dorsal (DG) and two subventral (SvG), whose activity differ throughout the nematode life cycle. Previous gland transcriptomic profiling studies identified dozens of candidate RKN effectors, but were focused on the juvenile stages of the nematode when the SvGs are most active. We developed a new approach to enrich for the active DGs of RKN M. incognita adult females for RNA and protein extraction. Female heads were manually cut from the body, and a combination of sonication/vortexing was used to dislodge contents inside the heads. DG-enriched fractions were collected by filtering using cell strainers. Comparative transcriptome profiling of pre-parasitic second-stage juveniles, female heads, and DG-enriched samples was conducted using RNA sequencing. Application of an established effector mining pipeline led to the identification of 83 candidate effector genes upregulated in DG-enriched samples of adult females that code for proteins with a predicted signal peptide, but lack transmembrane domains or homology to proteins in the free-living nematode Caenorhabditis elegans. In situ hybridization resulted in the identification of 14 new DG-specific candidate effectors expressed in adult females. Taken together, we have identified novel candidate Meloidogyne effector genes that may have essential roles during later stages of parasitism. 
    more » « less
  5. The symbiotic interaction between plants and arbuscular mycorrhizal (AM) fungi is often perceived as beneficial for both partners, though a large ecological literature highlights the context dependency of this interaction. Changes in abiotic variables, such as nutrient availability, can drive the interaction along the mutualism-parasitism continuum with variable outcomes for plant growth and fitness. However, AM fungi can benefit plants in more ways than improved phosphorus nutrition and plant growth. For example, AM fungi can promote abiotic and biotic stress tolerance even when considered parasitic from a nutrient provision perspective. Other than being obligate biotrophs, very little is known about the benefits AM fungi gain from plants. In this review, we utilize both molecular biology and ecological approaches to expand our understanding of the plant–AM fungal interaction across disciplines. 
    more » « less