High-density polyethylene (HDPE) is a widely used commercial plastic due to its excellent mechanical properties, chemical resistance, and water vapor barrier properties. However, less than 10% of HDPE is mechanically recycled, and the chemical recycling of HDPE is challenging due to the inherent strength of the carbon–carbon backbone bonds. Here, we report chemically recyclable linear and branched HDPE with sparse backbone ester groups synthesized from the transesterification of telechelic polyethylene macromonomers. Stoichiometrically self-balanced telechelic polyethylenes underwent transesterification polymerization to produce the PE-ester samples with high number-average molar masses of up to 111 kg/mol. Moreover, the transesterification polymerization of the telechelic polyethylenes and the multifunctional diethyl 5-(hydroxymethyl)isophthalate generated branched PE-esters. Thermal and mechanical properties of the PE-esters were comparable to those of commercial HDPE and tunable through control of the ester content in the backbone. In addition, branched PE-esters showed higher levels of melt strain hardening compared with linear versions. The PE-ester was depolymerized into telechelic macromonomers through straightforward methanolysis, and the resulting macromonomers could be effectively repolymerized to generate a high molar mass recycled PE-ester sample. This is a new and promising method for synthesizing and recycling high-molar-mass linear and branched PE-esters, which are competitive with HDPE and have easily tailorable properties. 
                        more » 
                        « less   
                    
                            
                            Post-polymerization modification of polymethacrylates enabled by keto–enol tautomerization
                        
                    
    
            We report a post-polymerization modification strategy to functionalize methacrylic copolymers through enol-ester transesterification. A new monomer, vinyl methacryloxy acetate (VMAc), containing both enol-ester and methacryloyl functionality, was successfully copolymerized with methyl methacrylate (MMA) by selective reversible addition–fragmentation chain transfer (RAFT) polymerization. Post-polymerization modification of pendent enol esters proceeded through an “irreversible” transesterification process, driven by the low nucleophilicity of the tautomerization product, to result in high conversion under mild conditions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1904631
- PAR ID:
- 10157071
- Date Published:
- Journal Name:
- Polymer Chemistry
- Volume:
- 11
- Issue:
- 17
- ISSN:
- 1759-9954
- Page Range / eLocation ID:
- 2955 to 2958
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)This communication describes our recent efforts to utilize Wittig olefination reactions for the post-polymerization modification of polynorbornene derivatives prepared through ring opening metathesis polymerization (ROMP). Polymerizing α-bromo ester-containing norbornenes provides polymers that can undergo facile substitution with triphenylphosphine. The resulting polymeric phosphonium salt is then deprotonated to form an ylide that undergoes reaction with various aryl aldehydes in a one-pot fashion to yield the respective cinnamates. These materials can undergo further modification through photo-induced [2 + 2] cycloaddition cross-linking reactions.more » « less
- 
            The advantageous material properties that arise from combining non-polar olefin monomers with activated vinyl monomers have led to considerable progress in the development of viable copolymerization strategies. However, unfavorable reactivity ratios during radical copolymerization of the two result in low levels of olefin incorporation, and an abundance of deleterious side reactions arise when attempting to incorporate many polar vinyl monomers via the coordination–insertion pathway typically applied to olefins. We reasoned that design of an activated monomer that is not only well-suited for radical copolymerization with polar vinyl monomers ( e.g. , acrylates) but is also capable of undergoing post-polymerization modification to unveil an olefin repeat unit would allow for the preparation of statistical olefin-acrylate copolymers. Herein, we report monomers fitting these criteria and introduce a post-polymerization modification strategy based on single-electron transfer (SET)-induced decarboxylative radical generation directly on the polymer backbone. Specifically, SET from an organic photocatalyst (eosin Y) to a polymer containing redox-active phthalimide ester units under green light leads to the generation of reactive carbon-centered radicals on the polymer backbone. We utilized this approach to generate statistical olefin-acrylate copolymers by performing the decarboxylation in the presence of a hydrogen atom donor such that the backbone radical is capped by a hydrogen atom to yield an ethylene or propylene repeat unit. This method allows for the preparation of copolymers with previously inaccessible comonomer distributions and demonstrates the promise of applying SET-based transformations to address long-standing challenges in polymer chemistry.more » « less
- 
            A unique class of β-boron-functionalized non-steroidal anti-inflammatory compound (pinB-NSAID) was previously synthesized via copper-catalyzed 1,2-difunctionalization of the respective vinyl arene with CO2 and B2pin2 reagents. Here, pinacolylboron-functionalized ibuprofen (pinB-ibuprofen) was used as a model substrate to develop the conditions for pinacol deprotection and subsequent boron functionalization. Initial pinacol-boronic ester deprotection was achieved by transesterification with diethanolamine (DEA) from the boralactonate organic salt. The resulting DEA boronate adopts a spirocyclic boralactonate structure rather than a diazaborocane–DABO boronate structure. The subsequent acid-mediated hydrolysis of DEA and transesterification/transamination provided a diverse scope of new boron-containing ibuprofen derivatives.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    