skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 25, 2026

Title: Towards Degradable and Functionalizable Polymers: Alternating Ring-Opening Metathesis Copolymerization of Oxanorbornadiene Dicarboxylate and 2,3-Dihydrofuran
Here we report the design and synthesis of acid-degradable and functionalizable polymers via alternating ring-opening metathesis copolymerization of oxanorbornadiene dicarboxylate and 2,3-dihydrofuran. The resulting polymers can undergo post-polymerization modification through...  more » « less
Award ID(s):
2316842
PAR ID:
10578839
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Polymer Chemistry
Volume:
16
ISSN:
1759-9954
Page Range / eLocation ID:
1647-1652
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Solution‐processable highly conductive polymers are of great interest in emerging electronic applications. For p‐doped polymers, conductivities as high a nearly 105S cm−1have been reported. In the case of n‐doped polymers, they often fall well short of the high values noted above, which might be achievable, if much higher charge‐carrier mobilities determined could be realized in combination with high charge‐carrier densities. This is in part due to inefficient doping and dopant ions disturbing the ordering of polymers, limiting efficient charge transport and ultimately the achievable conductivities. Here, n‐doped polymers that achieve a high conductivity of more than 90 S cm−1by a simple solution‐based co‐deposition method are reported. Two conjugated polymers with rigid planar backbones, but with disordered crystalline structures, exhibit surprising structural tolerance to, and excellent miscibility with, commonly used n‐dopants. These properties allow both high concentrations and high mobility of the charge carriers to be realized simultaneously in n‐doped polymers, resulting in excellent electrical conductivity and thermoelectric performance. 
    more » « less
  2. Abstract Persistence length is commonly used to quantitatively describe the chain rigidity of macromolecules, which represents an important structural parameter governing many physical properties of polymers. Although the mathematical models and experimental measurements on the chain rigidity of conventional single stranded polymers have been well explored and documented, those of the more rigid yet highly intriguing multiple stranded polymers, especially conjugated ladder polymers, are yet not well established. This article introduces the fundamental concepts on macromolecular chain rigidity, as well as the corresponding experimental methods, models, and simulations. Subsequently, representative examples of works done on the chain rigidity of nonladder conjugated polymers and conjugated ladder polymers are reviewed. Last but not least, it provides outlooks on the challenges with respect to the less‐investigated chain rigidity of conjugated ladder polymers, including new models to describe and predict chain conformation, synthetic control on structural defects, and insights into the correlation of rigidity and applications. 
    more » « less
  3. Polymer research is currently focused on sustainable and degradable polymers which are cheap, easy to synthesize, and environmentally friendly. Silicon-based polymers are thermally stable and can be utilized in various applications, such as columns and coatings. Poly(silyl ether)s (PSEs) are an interesting class of silicon-based polymers that are easily hydrolyzed in either acidic or basic conditions due to the presence of the silyl ether Si-O-C bond. Synthetically, these polymers can be formed in several different ways, and the most effective and environmentally friendly synthesis is dehydrogenative cross coupling, where the byproduct is H2 gas. These polymers have a lot of promise in the polymeric materials field due to their sustainability, thermal stability, hydrolytic degradability, and ease of synthesis, with nontoxic byproducts. In this review, we will summarize the synthetic approaches for the PSEs in the recent literature, followed by the properties and applications of these materials. A conclusion and perspective will be provided at the end. 
    more » « less
  4. Abstract Biomimetic antimicrobial polymers have been an area of great interest as the need for novel antimicrobial compounds grows due to the development of resistance. These polymers were designed and developed to mimic naturally occurring antimicrobial peptides in both physicochemical composition and mechanism of action. These antimicrobial peptide mimetic polymers have been extensively investigated using chemical, biophysical, microbiological, and computational approaches to gain a deeper understanding of the molecular interactions that drive function. These studies have helped inform SARs, mechanism of action, and general physicochemical factors that influence the activity and properties of antimicrobial polymers. However, there are still lingering questions in this field regarding 3D structural patterning, bioavailability, and applicability to alternative targets. In this review, we present a perspective on the development and characterization of several antimicrobial polymers and discuss novel applications of these molecules emerging in the field. This article is categorized under:Therapeutic Approaches and Drug Discovery > Emerging TechnologiesTherapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease 
    more » « less
  5. Abstract Conventional topochemical photopolymerization reactions occur exclusively in precisely-engineered photoactive crystalline states, which often produces high-insoluble polymers. To mitigate this, here, we report the mechanoactivation of photostable styryldipyrylium-based monomers, which results in their amorphization-enabled solid-state photopolymerization and produces soluble and processable amorphous polymers. A combination of solid-state nuclear magnetic resonance, X-ray diffraction, and absorption/fluorescence spectroscopy reveals the crucial role of a mechanically-disordered monomer phase in yielding polymers via photo-induced [2 + 2] cycloaddition reaction. Hence, mechanoactivation and amorphization can expand the scope of topochemical polymerization conditions to open up opportunities for generating polymers that are otherwise difficult to synthesize and analyze. 
    more » « less