The increasing penetration of renewable energy along with the variations of the loads bring large uncertainties in the power system states that are threatening the security of power system planning and operation. Facing these challenges, this paper proposes a cost-effective, nonparametric method to quantity the impact of uncertain power injections on the load margins. First, we propose to generate system uncertain inputs via a novel vine copula due to its capability in simulating complex multivariate highly dependent model inputs. Furthermore, to reduce the prohibitive computational time required in the traditional Monte-Carlo method, we propose to use a nonparametric, Gaussian-process-emulator-based reduced-order model to replace the original complicated continuation power-flow model. This emulator allows us to execute the time-consuming continuation power-flow solver at the sampled values with a negligible computational cost. The simulations conducted on the IEEE 57-bus system, to which correlated renewable generation are attached, reveal the excellent performance of the proposed method.
more »
« less
Probabilistic Power-Flow Calculation Based on a Novel Gaussian Process Emulator
In this letter, a novel Gaussian process emulator is proposed, for the first time, to conduct the probabilistic power-flow calculation. Based on Bayesian inference, a Gaussian process emulator is trained and served as a nonparametric, reduced-order model of the nonlinear power-flow model. This emulator allows us to evaluate the time-consuming power-flow solver at the sampled values with a negligible computational cost. The simulations reveal the excellent performance of this method.
more »
« less
- Award ID(s):
- 1917308
- PAR ID:
- 10157205
- Date Published:
- Journal Name:
- IEEE Transactions on Power Systems
- ISSN:
- 0885-8950
- Page Range / eLocation ID:
- 1- 4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The increasing penetration of renewable energy along with the variations of the loads bring large uncertainties in the power system states that are threatening the security of power system planning and operation. Facing these challenges, this paper proposes a cost-effective, nonparametric method to quantify the impact of uncertain power injections on the load margins. First, we propose to generate system uncertain inputs via a novel vine copula due to its capability in simulating complex multivariate highly dependent model inputs. Furthermore, to reduce the prohibitive computational time required in the traditional Monte-Carlo method, we propose to use a nonparametric, Gaussian-process-emulator-based reduced-order model to replace the original complicated continuation power-flow model. This emulator allows us to execute the time-consuming continuation power-flow solver at the sampled values with a negligible computational cost. The simulations conducted on the IEEE 57-bus system, to which correlated renewable generation are attached, reveal the excellent performance of the proposed method.more » « less
-
A modern power system is characterized by an increasing penetration of wind power, which results in large uncertainties in its states. These uncertainties must be quantified properly; otherwise, the system security may be threatened. Facing this challenge, we propose a cost-effective, data-driven approach for the probabilistic load-margin assessment problem. Using actual wind data, a kernel-density-estimator is applied to infer the nonparametric wind speed distributions, which are further merged into the framework of a vine copula. The latter enables us to simulate complex multivariate and highly dependent model inputs with a variety of bivariate copulae that precisely represent the tail dependence in the correlated samples. Furthermore, to reduce the prohibitive computational time of the traditional Monte-Carlo simulations processing a large amount of samples, we propose to use a nonparametric, Gaussian-process-emulator-based reduced-order model to replace the original complicated continuation power-flow model through a Bayesian learning framework. To accelerate the convergence rate of this Bayesian algorithm, a truncated polynomial chaos surrogate is developed, which serves as a highly efficient, parametric Bayesian prior. This emulator allows us to execute the time-consuming continuation power-flow solver at the sampled values with a negligible computational cost. Simulation results reveal the impressive performances of the proposed method.more » « less
-
The increasing penetration of renewable energy resources in power systems, represented as random processes, converts the traditional deterministic economic dispatch problem into a stochastic one. To solve this stochastic economic dispatch, the conventional Monte Carlo method is prohibitively time con- suming for medium- and large-scale power systems. To overcome this problem, we propose in this paper a novel Gaussian- process-emulator-based approach to quantify the uncertainty in the stochastic economic dispatch considering wind power penetration. Based on the dimension-reduction results obtained by the Karhunen-Loe`ve expansion, a Gaussian-process emulator is constructed. This surrogate allows us to evaluate the economic dispatch solver at sampled values with a negligible computational cost while maintaining a desirable accuracy. Simulation results conducted on the IEEE 118-bus system reveal that the proposed method has an excellent performance as compared to the traditional Monte Carlo method.more » « less
-
Abstract Energy 3D printing processes have enabled energy storage devices with complex structures, high energy density, and high power density. Among these processes, Freeze Nano Printing (FNP) has risen as a promising process. However, quality problems are among the biggest barriers for FNP. Particularly, the droplet solidification time in FNP governs thermal distribution, and subsequently determines product solidification, formation, and quality. To describe the solidification time, physical-based heat transfer model is built. But it is computationally intensive. The objective of this work is to build an efficient emulator for the physical model. There are several challenges unaddressed: 1) the solidification time at various locations, which is a multi-dimensional array response, needs to be modeled; 2) the construction and evaluation of the emulator at new process settings need to be quick and accurate. We integrate joint tensor decomposition and Nearest Neighbor Gaussian Process (NNGP) to construct an efficient multi-dimensional array response emulator with process settings as inputs. Specifically, structured joint tensor decomposition decomposes the multi-dimensional array responses at various process settings into the setting-specific core tensors and shared low dimensional factorization matrices. Then, each independent entry of the core tensor is modeled with an NNGP, which addresses the computationally intensive model estimation problem by sampling the nearest neighborhood samples. Finally, tensor reconstruction is performed to make predictions of solidification time for new process settings. The proposed framework is demonstrated by emulating the physical model of FNP, and compared with alternative tensor (multi-dimensional array) regression models.more » « less